ABSTRACT The electrostatic potential due to a charge in or near the plasma membrane of a eukaryotic cell is computed and applied to the transduction of cell-penetrating peptides and to the exocytosis of neurotransmitters.

I. CELL MEMBRANES

The plasma membrane of a eucaryotic cell and the membranes of the endoplasmic reticulum, the Golgi apparatus, and other membrane-enclosed organelles are lipid bilayers about 5-nm-thick studded with proteins. Membrane proteins make up about half the mass of animal cell membranes. The lipids are mainly phospholipids, sterols, and glycolipids. Of the four main phospholipids in membranes, three—phosphatidylethanolamine (PE), phosphatidylcholine (PC), and sphingomyelin (SM)—are neutral, and one, phosphatidylserine (PS), is negatively charged. In a living cell, PE and PS are mostly in the cytosolic layer of the plasma membrane; PC and SM are mostly in the outer layer [1, 2]; and the electrostatic potential of the cytosol is 20 to 120 mV lower than that of the extracellular environment.

The electrostatic potential due to a charge in a cell membrane is derived in Section II and in the Appendix. The electrostatic potential due to a charge in the extracellular environment but near the plasma membrane was derived in a recent paper [3] and is discussed in Section III. In Section IV, a symmetry argument is used to convert that solution to the potential of a charge in the cytosol but near the plasma membrane.

These solutions show that the plasma membrane shields the cytosol almost completely from charges in the extracellular environment. It follows, somewhat counter intuitively, that the electric field inside the lipid bilayer is greater than a naive estimate would suggest. Such more intense electric fields enhance the sensitivity of transmembrane proteins and make electroporation, discussed in Section V, more likely. These ideas are applied to the transduction of oligoarginines in Section VI and to the exocytosis of neurotransmitters in Section VII. The paper ends in Section VIII with some remarks about free energy and the brain inspired by Emonet’s qbio talk on how bacteria use noise to forage.

II. THE POTENTIAL DUE TO A CHARGE IN THE LIPID BILAYER

Here we derive in the continuum limit the electrostatic potential $V(q, \rho, \phi, z)$ in cylindrical coordinates due to a charge q on the z-axis at the point $(0, 0, h)$ in the phospholipid bilayer of a eukaryotic cell. We use coordinates in which $z = 0$ labels the middle of the lipid bilayer. If $t \approx 5$ nm is the thickness of the phospholipid bilayer, then the cytosol is the region $z < -t/2$, and the extracellular medium is the region $z > t/2$.

In electrostatic problems, Maxwell’s equations reduce to Gauss’s law

$$\nabla \cdot D = \rho$$

which relates the divergence of the electric displacement D to the density ρ of free charges (charges that are free to move in or out of the dielectric medium—as opposed to those that are part of the medium and bound to it by molecular forces), and the static form of Faraday’s law

$$\nabla \times E = 0$$

which implies that the electric field E is the gradient of an electrostatic potential

$$E = -\nabla V.$$
\(\epsilon_t \approx 2 \), that of the extra-cellular environment is \(\epsilon_w \approx 80 \), and that of the cytosol is \(\epsilon_c \approx 80 \).

We use the method of image charges. The charge \(q \) at \((0,0,h)\) for \(-t/2 < h < t/2\) will generate image charges at the points \(r = (0,0,2nt + h) \) and \(r = (0,0,(2n+1)t-h) \) in which \(n \) runs over all the integers. The cylindrical symmetry of the problem ensures that the potential is independent of the azimuthal angle \(\phi \) and so can depend only upon \(\rho = \sqrt{x^2 + y^2} \) and \(z \). The details of the calculation are relegated to the Appendix.

As shown there, the electrostatic potential in the lipid bilayer \(V_l(\rho, z) \) due to a charge \(q \) in the lipid bilayer at the point \((0,0,h)\) on the \(z \)-axis is

\[
V_l(\rho, z) = \frac{q}{4\pi \epsilon_0 \epsilon_t} \left[\sum_{n=-\infty}^{\infty} \frac{(pp')^n}{\sqrt{\rho^2 + (z - 2nt - h)^2}} - \sum_{n=0}^{\infty} \frac{p (pp')^n}{\sqrt{\rho^2 + (z - (2n+1)t - h)^2}} - \sum_{n=1}^{\infty} \frac{p'(pp')^{n-1}}{\sqrt{\rho^2 + (z + (2n-1)t + h)^2}} \right]
\]

(8)

in which \(p \) and \(p' \) are the ratios

\[
p = \frac{\epsilon_w - \epsilon_t}{\epsilon_w + \epsilon_t} \quad \text{and} \quad p' = \frac{\epsilon_c - \epsilon_t}{\epsilon_c + \epsilon_t}
\]

(9)

which lie between 0 and 1.

That in the extra-cellular medium is

\[
V_w(\rho, z) = \frac{q}{4\pi \epsilon_0 \epsilon_w} \left[\sum_{n=0}^{\infty} \frac{(pp')^n}{\sqrt{\rho^2 + (z + 2nt - h)^2}} - \sum_{n=1}^{\infty} \frac{p'(pp')^{n-1}}{\sqrt{\rho^2 + (z + (2n-1)t + h)^2}} \right]
\]

(10)

where \(\epsilon_w = (\epsilon_c + \epsilon_t)/2 \) is average of relative permittivity of the extracellular medium \(\epsilon_w \) and that of the lipid bilayer \(\epsilon_t \).

Finally, the potential in the cytosol is

\[
V_c(\rho, z) = \frac{q}{4\pi \epsilon_0 \epsilon_c} \left[\sum_{n=0}^{\infty} \frac{(pp')^n}{\sqrt{\rho^2 + (z - 2nt - h)^2}} - \frac{p (pp')^n}{\sqrt{\rho^2 + (z - (2n+1)t + h)^2}} \right]
\]

(11)

in which \(\epsilon_c = (\epsilon_c + \epsilon_t)/2 \) is average of relative permittivity of the cytosol \(\epsilon_c \) and that of the lipid bilayer \(\epsilon_t \).

The first 1000 terms of the series \([8], [10], \& [11]\) for the potentials \(V_l(\rho, z), V_c(\rho, z), \) and \(V_c(\rho, z) \) are plotted in Fig. 1 (in Volts) for \(\rho = 1 \) nm as a function of the height \(z \) (nm) above the midpoint of the phospholipid bilayer for a unit charge \(q = |e|\) in the bilayer at \((\rho, z) = (0, -2)\) (left curve, blue), \((0,0)\) (middle curve, green), and \((0,2)\) nm (right curve, red). The lipid bilayer extends from \(z = -2.5 \) to \(z = 2.5 \) nm and is bounded by black vertical lines in the figure. The relative permittivities are taken to be \(\epsilon_w = \epsilon_c = 80 \) and \(\epsilon_t = 2 \).

III. THE POTENTIAL DUE TO A CHARGE IN THE EXTRACELLULAR MEDIUM

In Appendix A of [3], I calculated the electrostatic potential due to a charge in the extracellular medium by using the asymmetrical coordinates \(z' = z - t/2 \) and \(h' = h - t/2 \) used in the Appendix of the present paper. Transforming those formulas to the symmetrical coordinates \(z \) and \(h \), we see that the potential in the lipid bilayer \(V_l(\rho, z) \) due to a charge \(q \) in the extra-cellular environment at the point \((0,0,h)\) on the \(z \)-axis a height \(h \) above the midline of the lipid bilayer is

\[
V_l(\rho, z) = \frac{q}{4\pi \epsilon_0 \epsilon_w} \sum_{n=0}^{\infty} \left[\frac{(pp')^n}{\sqrt{\rho^2 + (z - 2nt - h)^2}} - \frac{p'(pp')^n}{\sqrt{\rho^2 + (z + (2n-1)t + h)^2}} \right].
\]

(12)
The potential in the extracellular medium is

$$V_w(\rho, z) = \frac{q}{4\pi \epsilon_0 \epsilon_w} \left[\frac{1}{r} + \frac{p}{\sqrt{r^2 + (z - t + h)^2}} \right] - \frac{\epsilon_w \epsilon_\ell}{\epsilon_w} \sum_{n=1}^{\infty} \frac{p^{n-1} p^n}{\sqrt{p^2 + (z + (2n-1)t + h)^2}} \right]$$

in which \(r = \sqrt{r^2 + (z - h)^2}\) is the distance from the charge \(q\).

The potential in the cytosol due to the same charge \(q\) is

$$V_c(\rho, z) = \frac{q \epsilon_\ell}{4\pi \epsilon_0 \epsilon_w \epsilon_\ell} \sum_{n=0}^{\infty} \frac{(pp')^n}{\sqrt{r^2 + (z - 2nt - h)^2}}$$

IV. THE POTENTIAL DUE TO A CHARGE IN THE CYTOSOL

We may find the potential due to a charge in the cytosol by a symmetry argument from the potential due to a charge in the extracellular medium. Thus, \(V_w(\rho, z)\) for a charge in the cytosol at \(r = (0, 0, h)\) with \(h \leq -t/2\) is \(V_c(\rho, -z)\) for a charge in the extra-cellular medium at \(r = (0, 0, -h)\). Similarly, \(V_c(\rho, z)\) for a charge in the cytosol at \((0, 0, h)\) with \(h \leq -t/2\) is \(V_c(\rho, -z)\) for a charge in the extra-cellular medium at \(r = (0, 0, -h)\) but with \(\epsilon_\ell\) and \(\epsilon_w\) interchanged. And \(V_c(\rho, z)\) for a charge in the cytosol at \((0, 0, h)\) with \(h \leq -t/2\) is \(V_c(\rho, -z)\) for a charge in the extra-cellular medium at \(r = (0, 0, -h)\) but with \(\epsilon_\ell\) and \(\epsilon_w\) as well as \(p\) and \(p'\) interchanged.

Thus, the potential in the lipid bilayer is

$$V_c(\rho, z) = \frac{q}{4\pi \epsilon_0 \epsilon_c} \left[\frac{1}{r} + \frac{p'}{\sqrt{p'^2 + (z + t + h)^2}} \right] - \frac{\epsilon_\ell \epsilon_c}{\epsilon_\ell} \sum_{n=1}^{\infty} \frac{p (pp')^{n-1}}{\sqrt{p'^2 + (z - 2nt + h)^2}}$$

while that in the extracellular medium is

$$V_w(\rho, z) = \frac{q \epsilon_\ell}{4\pi \epsilon_0 \epsilon_w \epsilon_\ell} \sum_{n=0}^{\infty} \frac{(pp')^n}{\sqrt{r^2 + (z + 2nt - h)^2}}$$

and that in the cytosol is

$$V_c(\rho, z) = \frac{q}{4\pi \epsilon_0 \epsilon_c} \left[\frac{1}{r} + \frac{p'}{\sqrt{p'^2 + (z + t + h)^2}} \right] - \frac{\epsilon_\ell \epsilon_c}{\epsilon_\ell} \sum_{n=1}^{\infty} \frac{p (pp')^{n-1}}{\sqrt{p'^2 + (z - 2nt + h)^2}}$$

in which \(r = \sqrt{r^2 + (z - h)^2}\) is the distance to the charge.

The first 1000 terms of the series (12), (13), & (14) for the potentials \(V_c(\rho, z), V_w(\rho, z),\) and \(V_c(\rho, z)\) are plotted in Fig. 2 (in Volts) for \(\rho = 1\) nm as a function of the height \(z\) (nm) above or below the midpoint of the phospholipid bilayer for a unit charge \(q = |e|\) in the cytosol at \((\rho, z) = (0, -3.5)\) nm (left curve, blue) and in the extracellular medium at \((0, 3.5)\) nm (right curve, red). The lipid bilayer and the relative permittivities are as in Fig. 1.

FIG. 2: The electric potential \(V(\rho, z)\) from (12), (14), and (15) in Volts for \(\rho = 1\) nm as a function of the height \(z\) (nm) above or below the midpoint of the phospholipid bilayer for a unit charge \(q = |e|\) in the cytosol at \((\rho, z) = (0, -3.5)\) nm (left curve, blue) and in the extracellular medium at \((0, 3.5)\) nm (right curve, red). The lipid bilayer and the relative permittivities are as in Fig. 1.

Naively, one might think that the electrostatic potential \(V(\rho, z)\) due to a charge at \((0, z_0)\) would have a maximum at \(z_{\text{max}} = z_0\) independent of \(\rho\). Actually, the formulas of this paper show that the maximum depends upon \(\rho\) and is at \(z_{\text{max}} = z_0\) only for \(\rho = 0\). At finite \(\rho\), the maximum is closer to the midpoint of the lipid bilayer, \(|z_{\text{max}}| < |z_0|\) as shown in Fig. 3.
in a plasma membrane is then

\[E(r) = 2\pi r^2\gamma - \pi r^2\Sigma - \frac{1}{2}\pi r^2\Delta C(\Delta V)^2. \]

(19)

This energy has a maximum of

\[E(r_c) = \frac{\pi\gamma^2}{\Sigma + \frac{1}{2}\Delta C(\Delta V)^2} \approx \frac{2\pi\gamma^2}{\Delta C(\Delta V)^2}. \]

(20)

at the critical radius

\[r_c = \frac{\gamma}{\Sigma + \frac{1}{2}\Delta C(\Delta V)^2} \approx \frac{2\gamma}{\Delta C(\Delta V)^2}. \]

(21)

In Fig. 4, the Boltzmann factor \(e^{-E(r)/(kT)} \times 100 \) is plotted as a function of the radius \(r \) of the pore up to the critical radius \(r_c \) for various transmembrane voltages from \(-200\) (solid, red) to \(-400\) mV (dot-dash, cyan). Clearly, the chance of a pore forming rises steeply with the magnitude of the voltage and falls with the radius of the pore.

If the transmembrane potential \(\Delta V \) is turned off before the radius of the pore reaches \(r_c \), then the radius \(r \) of the pore usually shrinks quickly (well within 1 ms [6]) to a radius so small as to virtually shut-down the conductivity of the pore. This rapid closure occurs because in (19) the energy \(2\pi r\gamma \) dominates over \(-\pi r^2\Sigma\), the surface tension \(\Sigma \) being negligible. Such a pore is said to be reversible. But if \(\Delta V \) remains on when \(r \) exceeds the critical radius \(r_c \), then the pore usually will grow and lyse the cell; such a pore is said to be irreversible.

The formula [21] provides an upper limit on the radius of a reversible pore. This upper limit drops with the square of the transmembrane voltage \(\Delta V \) from \(r_c = 3.6 \) nm for \(\Delta V = -200 \) mV, to \(1.6 \) nm for \(\Delta V = -300 \), and to \(0.9 \) nm for \(\Delta V = -400 \) mV.

The time \(t_c \) for a pore’s radius to reach the critical radius \(r_c \) is the time to lysis; it varies greatly and apparently randomly even within cells of a given kind. In erythrocytes, its mean value drops by nearly an order of magnitude with each increase of 100 mV in the transmembrane potential [6] and is about a fifth of a second when \(\Delta V = -300 \) mV.

Electroporation may be part of the physics behind the transduction of cell-penetrating peptides and the exocytosis of neurotransmitters, as explained in Sections VI & VII.

\[\text{V. ELECTROPORATION} \]

Electroporation is the formation of pores in membranes by an electric field. Depending on the duration of the field and the type of cell, an electric potential difference across a cell’s plasma membrane in excess of 150 to 200 mV will create pores. There are two main components to the energy of a pore. The first is the line energy \(2\pi\gamma r \) due to the linear tension \(\gamma \), which is of the order of \(10^{-11} \) J/m. The second is the electrical energy which is the difference \(\Delta W \) between the energy

\[W = \frac{\varepsilon_0\varepsilon_r}{2} \int E^2(x) \, d^3x. \]

(18)

when the pore is made of lipid and when it is made of saline water. This energy change usually is taken to be \(\Delta W = -0.5\Delta C\pi r^2(\Delta V)^2 \) in which \(\Delta V \) is the voltage across the membrane and \(\Delta C = C_w - C_t \) is the difference between the specific capacity per unit area \(C_w = \epsilon_w\varepsilon_0/t \) of the water-filled pore and that \(C_t = \epsilon_t\varepsilon_0/t \) of the pore-free membrane of thickness \(t \). There also is a small term due to the surface tension \(\Sigma \) of the plasma membrane of the cell, but this term usually is negligible since \(\Sigma \) is of the order of \(2.5 \times 10^{-6} \) J/m² [4].

\[\text{VI. MOLECULAR ELECTROPORATION AND THE TRANSDUCTION OF OLIGOARGININES} \]

Cell-penetrating peptides (CPPs) can carry into cells cargoes with molecular weights of as much as 3,000 Da—much greater than the nominal limit 500 of the “rule of 5” [10]. Therapeutic applications with well-chosen peptide cargoes of 8–33 amino acids are described in references [11,23].
In a model advanced in references [3, 24, 25], a polyarginine sticks to the cell membrane as its guanidinium groups electrostatically interact with the phosphate groups of the outer leaflet of the phospholipid bilayer. If the positive charge of the polyarginine exceeds about $8|e|$, then it can raise the transmembrane potential above the threshold for electroporation, some -200 mV [4–9].

The transmembrane potential ΔV is the sum of three terms

$$\Delta V = \Delta V_{cell} + \Delta V_{CPP} + \Delta V_{NaCl}$$ \hspace{1cm} (22)

the resting transmembrane potential ΔV_{cell} of the cell in the absence of CPPs, the transmembrane potential ΔV_{CPP} due to an oligoarginine or other CPP, and the transmembrane potential ΔV_{NaCl} due to the counterions of the extracellular medium. The resting transmembrane potential ΔV_{cell} of the cell varies between about 20 mV to more than 70 mV, depending upon the type of cell. Ideally, it is measured experimentally. The transmembrane potential ΔV_{CPP} due to an oligoarginine or to some other positively charged CPP may be determined from the formulas (12–14) for the potential of a charge outside a membrane [3]. The transmembrane potential ΔV_{NaCl} due to the counterions of the extracellular medium requires a Monte Carlo simulation of the Na^+, Cl^-, and other ions of the extracellular medium in the electrostatic potential $V_{cell} + V_{CPP}$. This simulation was performed in [3] with the aid of equations (12–14).

The code took snapshots of the distributions of the sodium and chloride ions every 2500 sweeps after thermalization. Fig. 5 displays the last snapshot (after 50,000 sweeps) of 94 Na^+, 106 Cl^-, and 12 Rs in a random coil. The coordinates are in nm.

The lipid bilayer insulates the extracellular counterions from the potential due to the counterions of the cytosol, however, so their potential may be neglected in the simulation of the extracellular counterions.

The values of $\Delta V_{CPP} + \Delta V_{NaCl}$ found in Monte Carlo simulations [3] of the salt around an R^N oligoarginine are listed in Table I. A resting transmembrane potential $-120 < \Delta V_{cell} < -20$ mV should be added to these values of $\Delta V_{CPP} + \Delta V_{NaCl}$ to obtain the full transmembrane potential ΔV. For $N > 8$, the transmembrane potential ΔV can exceed -200 mV which is enough [4–9] to cause electroporation in common eukaryotic cells.

In references [24] and [3], it was pointed out that one way to test the model advanced in those papers would be to look for the formation of reversible pores by detecting transient (ms) changes in the conductance of membranes exposed to CPPs such as R^9. Such experiments have now been done. Using the planar-phospholipid-bilayer method, Herce et al. found that R^9 induced transient ionic currents through model phospholipid membranes [26]. They estimated that the mean radius of these pores to be 0.66 nm, which is safely below the limiting critical radius (21) of between 0.9 and 3.6 nm for the voltage range of $-400 \leq \Delta V \leq -200$ mV. Moreover, using the patch-clamp technique, they found that R^9 induced transient ionic currents through the mem-
TABLE I: The voltage differences $\Delta V_{CPP} + \Delta V_{NaCl}$ (mV) across the plasma membrane induced by an R^N oligoarginine as an α-helix, a random coil, or a β-strand and by the ions of 156 mM Na$^+$ and Cl$^-$ reacting to it. The resting transmembrane potential ΔV_{cell} is not included.

<table>
<thead>
<tr>
<th>N</th>
<th>R^N α-helix</th>
<th>R^N random coil</th>
<th>R^N β-strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-144 ± 4</td>
<td>-154 ± 3</td>
<td>-148 ± 4</td>
</tr>
<tr>
<td>6</td>
<td>-174 ± 4</td>
<td>-173 ± 4</td>
<td>-168 ± 1</td>
</tr>
<tr>
<td>7</td>
<td>-206 ± 4</td>
<td>-201 ± 3</td>
<td>-189 ± 2</td>
</tr>
<tr>
<td>8</td>
<td>-232 ± 3</td>
<td>-228 ± 1</td>
<td>-199 ± 5</td>
</tr>
<tr>
<td>9</td>
<td>-256 ± 6</td>
<td>-246 ± 2</td>
<td>-205 ± 4</td>
</tr>
<tr>
<td>10</td>
<td>-281 ± 2</td>
<td>-260 ± 5</td>
<td>-210 ± 4</td>
</tr>
<tr>
<td>11</td>
<td>-306 ± 5</td>
<td>-260 ± 3</td>
<td>-218 ± 4</td>
</tr>
<tr>
<td>12</td>
<td>-323 ± 4</td>
<td>-261 ± 4</td>
<td>-213 ± 2</td>
</tr>
</tbody>
</table>

Electrostatics of Lipid Bilayer

The shape change causes the vesicle to hemifuse its distal membranes with those of the plasma membrane. The shape change is enough for molecular electroporation.

A synaptic terminal of an axon is crowded with vesicles loaded with neurotransmitters, usually glutamate (excitatory) and its close relative GABA (inhibitory). Some 5 to 10 vesicles wait near its plasma membrane poised to fuse with that bilayer and release their neurotransmitters. The arrival of an action potential opens voltage-gated calcium channels and allows an influx of Ca$^{2+}$ ions into the cytosol of the presynaptic axon. At least 3 calcium-sensitive synaptotagmin/SNARE (syt-t-SNARE) complexes [28] attach each vesicle to the axon’s plasma membrane as shown in Fig. 6. After the influx of calcium, each synaptotagmin (syt) binds 3 Ca$^{2+}$ ions in its C2A calcium-binding region and another 2 in its C2B binding domain. When 3 syt-t-SNARE complexes bind 15 Ca$^{2+}$ ions, they increase the charge around the junction of the vesicle with the axon membrane by $30|e|$. This huge change is enough to alter the shape of the syt-t-SNARE complexes and to insert the Ca$^{2+}$ ions into the plasma membrane of the axon [27] as shown in Fig. 6. The shape change causes the vesicle to hemifuse its distal membranes with those of the plasma membrane. The electrostatic change enhances the probability of molecular electroporation—the formation of a pore of saline water leading from the interior of the vesicle through the hemifused vesicle-axon bilayer to the synaptic cleft. A voltage drop of about 200 mV across a plasma membrane is enough for molecular electroporation.

FIG. 6: Model of the Ca$^{2+}$-activated membrane fusion complex. (a) In the presence of Ca$^{2+}$, the Ca$^{2+}$-binding loops of both the C2A and C2B domains of synaptotagmin I (syt) insert into the bilayer [15]. Phosphatidyl inositol 4,5-bisphosphate [PtdIns(4,5)P2] (localized on the inner leaflet of the target membrane) steers the membrane penetration activity of the C2 domains towards the target membrane [12]. These interactions bring the opposing bilayers into close proximity. Furthermore, syt directly interacts with isolated target membrane SNAREs (t-SNAREs), binary t-SNARE complexes, and assembled ternary SNARE complexes. Syt-t-SNARE interactions might connect the Ca$^{2+}$-sensing process directly to membrane fusion by regulating the assembly of trans-SNARE complexes and/or the disposition of SNARE complexes during the opening and dilation of fusion pores. Abbreviation: SNAP-25, synaptosome-associated protein of 25 kDa. Figure from [27], used with the permission of E. R. Chapman and Elsevier.
ral events, such as the triggering of an action potential by oxygen, by thermal fluctuations, and by stochastic states of minimum free energy. These transitions are

release of the neurotransmitters, a process called “kiss and run.” If the pore radius \(r_p \) surpasses \(r_c \), the pore continues to expand, and the entire contents of the vesicle are emptied into the synaptic cleft.

VIII. THE NOISY BRAIN

Like any open physical system, the brain lurches to states of minimum free energy. These transitions are constrained by anatomy. They are enabled by sugar and oxygen, by thermal fluctuations, and by stochastic neural events, such as the triggering of an action potential and the release of neurotransmitters into a synaptic cleft.

All these forms of noise contribute to an effective temperature. Without such noise, the effective temperature would be zero, and transitions to states of lower free energy, could not occur. Without noise, there is no thought. Bacteria use noise to forage \[29, 30\].

Appendix: Computation of the Potential

It will be somewhat simpler to use an asymmetrical coordinate system in which \(z' = z - t/2 = 0 \) denotes the interface between the extracellular medium and the lipid bilayer. In these coordinates, the charge in the bilayer is at \(z' = h' = h - t/2 \). These coordinates have the advantage that the charge and the image charges are at the points \(r = (0, 0, 2nt \pm h') \) for all integers \(n \).

In this notation, the potential in the lipid bilayer is

\[
V_l(\rho, z') = \frac{1}{4\pi\varepsilon_0\varepsilon_\ell} \sum_{s=\pm 1} \sum_{n=-\infty}^{\infty} \frac{q_{n,s}}{\sqrt{\rho^2 + (z' - (2nt + sh'))^2}}
\]

while that in the extracellular environment is

\[
V_w(\rho, z') = \frac{1}{4\pi\varepsilon_0\varepsilon_w} \sum_{s=\pm 1} \sum_{n=-\infty}^{0} \frac{q_{w,n,s}}{\sqrt{\rho^2 + (z' - (2nt + sh'))^2}}
\]

with \(q_{w,0,-1} = 0 \), and that in the cytosol is

\[
V_c(\rho, z') = \frac{1}{4\pi\varepsilon_0\varepsilon_c} \sum_{s=\pm 1} \sum_{n=0}^{\infty} \frac{q_{c,n,s}}{\sqrt{\rho^2 + (z' - (2nt + sh'))^2}}
\]

The continuity \[4\] of the transverse electric field \(E_\rho \) and that \[5\] of the normal displacement \(D_z \) across the planes \(z' = 0 \) and \(z' = -t \) imply that the coefficients \(q_0, q_{n,s}, q_{w,n,s}, \) and \(q_{c,n,s} \) must satisfy for \(n > 0 \) and \(s = \pm 1 \) the relations

\[
q_{n,s} + q_{-(n+1),-s} = \frac{\varepsilon_\ell}{\varepsilon_w} q_{w,-n,-s}
\]

\[
q_{n,s} - q_{-(n+1),-s} = -q_{w,-n,-s}
\]

\[
q_{n,s} + q_{-(n+1),-s} = \frac{\varepsilon_\ell}{\varepsilon_c} q_{c,n,s}
\]

\[
q_{n,s} - q_{-(n+1),-s} = q_{c,n,s}
\]

as well as the six special cases

\[
q_{0,-1} + q_{0,1} = \frac{\varepsilon_\ell}{\varepsilon_w} q_{w,0,1}
\]

\[
q_{0,-1} - q_{0,1} = -q_{w,0,1}
\]

\[
q_{0,1} + q_{-1,-1} = -\frac{\varepsilon_\ell}{\varepsilon_c} q_{c,0,1}
\]

\[
q_{0,1} - q_{-1,-1} = q_{c,0,1}
\]

\[
q_{-1,1} + q_{0,-1} = -\frac{\varepsilon_\ell}{\varepsilon_c} q_{c,0,-1}
\]

\[
q_{-1,1} - q_{0,-1} = q_{c,0,-1}
\]
The four equations \([A.4, A.7]\) tell us that for \(n > 0\) and \(s = \pm 1\)
\[
q_{n,s} = -\frac{\epsilon_w - \epsilon_t}{2\epsilon_w} q_w n_{-n,-s} \quad (A.14)
\]
\[
q_{-n,-s} = \frac{\epsilon_w + \epsilon_t}{2\epsilon_w} q_{w-n,-s} \quad (A.15)
\]
\[
q_{n,s} = \frac{\epsilon_c + \epsilon_t}{2\epsilon_c} q_{cn,s} \quad (A.16)
\]
\[
q_{-(n+1),-s} = -\frac{\epsilon_c - \epsilon_t}{2\epsilon_c} q_{cn,s} \quad (A.17)
\]
from which we can infer that for \(n > 0\)
\[
q_{n,s} = -pq_{-n,-s} \quad (A.18)
\]
and that for \(n > 1\) and \(s = \pm 1\)
\[
q_{n,s} = (pp')^{n-1} q_{1,s} \quad (A.19)
\]
\[
q_{-n,-s} = -p^{n-2} p^{n-1} q_{1,s} \quad (A.20)
\]
\[
q_{cn,s} = (1 + p') (pp')^{n-1} q_{1,s} \quad (A.21)
\]
\[
q_{w-n,-s} = -(1 + p)p^{n-2} p^{n-1} q_{1,s} \quad (A.22)
\]
in which we used the abbreviations
\[
p = \frac{\epsilon_w - \epsilon_t}{\epsilon_w + \epsilon_t} \quad \text{and} \quad p' = \frac{\epsilon_c - \epsilon_t}{\epsilon_c + \epsilon_t} \quad (A.23)
\]
which lie between 0 and 1.

With the further abbreviations \(\epsilon_{wt} = (\epsilon_w + \epsilon_t)/2\) and \(\epsilon_{ct} = (\epsilon_c + \epsilon_t)/2\), the six relations \([A.8, A.13]\) imply that
\[
q_{w0,1} = -\frac{\epsilon_w}{p\epsilon_{wt}} q_{0,-1} \quad (A.24)
\]
\[
q_{w0,1} = \frac{\epsilon_w}{\epsilon_{wt}} q_{0,1} \quad (A.25)
\]
\[
q_{c0,1} = \frac{\epsilon_c}{\epsilon_{ct}} q_{0,1} \quad (A.26)
\]
\[
q_{c0,1} = -\frac{\epsilon_c}{p'\epsilon_{ct}} q_{-1,-1} \quad (A.27)
\]
\[
q_{c0,-1} = \frac{\epsilon_c}{\epsilon_{ct}} q_{0,-1} \quad (A.28)
\]
\[
q_{c0,-1} = -\frac{\epsilon_c}{p'\epsilon_{ct}} q_{-1,1} \quad (A.29)
\]
Gauss’s law \([1]\) applied to a tiny sphere about the physical charge \(q\) gives
\[
q_{0,1} = q. \quad (A.30)
\]
This identification and the six equations \([A.24, A.29]\) tell us that
\[
q_{w0,1} = \frac{\epsilon_w}{\epsilon_{wt}} q \quad (A.31)
\]
\[
q_{c0,1} = \frac{\epsilon_c}{\epsilon_{ct}} q \quad (A.32)
\]
\[
q_{0,-1} = -p q \quad (A.33)
\]
\[
q_{-1,-1} = -p' q \quad (A.34)
\]
\[
q_{c0,-1} = -p' \frac{\epsilon_c}{\epsilon_{ct}} q \quad (A.35)
\]
\[
q_{-1,1} = pp' q. \quad (A.36)
\]

Equations \([A.18, A.30]\) allow us to relate all the coefficients for \(n > 0\) to \(q_{0,1} = q\) and to \(q_{w0,-1} = 0\):
\[
q_{n,1} = (pp')^{n} q \quad (A.37)
\]
\[
q_{n,-1} = -p (pp')^{n} q \quad (A.38)
\]
\[
q_{-n,1} = (pp')^{n} q \quad (A.39)
\]
\[
q_{-n,-1} = -p' (pp')^{n-1} q \quad (A.40)
\]
\[
q_{w-n,-1} = (1 + p) (pp')^{n} q \quad (A.41)
\]
\[
q_{cn,1} = (1 + p') (pp')^{n} q \quad (A.42)
\]
\[
q_{cn,-1} = - (1 + p') p (pp')^{n} q. \quad (A.44)
\]

The electric potential due to a charge \(q\) in the lipid bilayer of thickness \(t\) and a distance \(|h'| = h - h'\) below the extra-cellular environment then is
\[
V_{E}(\rho, z') = \frac{q}{4\pi\epsilon_0\epsilon_{wt}} \left[\sum_{n=-\infty}^{\infty} \sqrt{\rho^2 + (z' - 2nt - h')^2} \right] - \frac{p (pp')^{n}}{\sqrt{\rho^2 + (z' - 2nt + h')^2}} \wedge \sum_{n=0}^{\infty} \frac{p' (pp')^{n}}{\sqrt{\rho^2 + (z' + 2nt + h')^2}} \right] . \quad (A.45)
\]
in the lipid bilayer. That in the extra-cellular environment is
\[
V_{W}(\rho, z') = \frac{q}{4\pi\epsilon_0\epsilon_{wt}} \left[\sum_{n=0}^{\infty} \frac{(pp')^{n}}{\sqrt{\rho^2 + (z' + 2nt + h')^2}} \right] . \quad (A.46)
\]
Finally, the potential in the cytosol is
\[
V_{C}(\rho, z') = \frac{q}{4\pi\epsilon_0\epsilon_{ct}} \left[\sum_{n=0}^{\infty} \frac{(pp')^{n}}{\sqrt{\rho^2 + (z' - 2nt - h)^2}} \right] - \frac{p (pp')^{n}}{\sqrt{\rho^2 + (z' - 2nt + h)^2}} \wedge \sum_{n=1}^{\infty} \frac{p' (pp')^{n-1}}{\sqrt{\rho^2 + (z' + 2nt - h)^2}} \right] . \quad (A.47)
\]

We now revert to our symmetrical coordinates in which \(z = z' + t/2\) and \(h = h' + t/2\). The electric potential due to a charge \(q\) in the lipid bilayer of thickness \(t\) at \(r = (0, 0, h)\) where \(-t/2 \leq h \leq t/2\) now is
\[
V_{E}(\rho, z) = \frac{q}{4\pi\epsilon_0\epsilon_{wt}} \left[\sum_{n=-\infty}^{\infty} \frac{(pp')^{n}}{\sqrt{\rho^2 + (z - 2nt - h)^2}} \right] - \frac{p (pp')^{n}}{\sqrt{\rho^2 + (z - (2n+1)t + h)^2}} \wedge \sum_{n=0}^{\infty} \frac{p' (pp')^{n}}{\sqrt{\rho^2 + (z + (2n - 1)t + h)^2}} \right] . \quad (A.48)
\]
in the lipid bilayer. The potential in the extra-cellular environment is

\[
V_w(\rho, z) = \frac{q}{4\pi \epsilon_0 \sigma_c} \left[\sum_{n=0}^{\infty} \frac{(pp')^n}{\sqrt{\rho^2 + (z + 2nt - h)^2}} \right] - \sum_{n=1}^{\infty} \frac{p(pp')^{n-1}}{\sqrt{\rho^2 + (z + (2n-1)t + h)^2}} \tag{A.49}
\]

Finally, the potential in the cytosol is

\[
V_c(\rho, z) = \frac{q}{4\pi \epsilon_0 \sigma_c} \left[\sum_{n=0}^{\infty} \frac{(pp')^n}{\sqrt{\rho^2 + (z - 2nt - h)^2}} \right] - \frac{p(pp')^n}{\sqrt{\rho^2 + (z - (2n+1)t + h)^2}} \tag{A.50}
\]

To check that these formulas for the electrostatic potentials give rise to a transverse electric field \(E_\rho \) and a normal electric displacement \(D_z \) that are continuous across the water-lipid and lipid-cytosol interfaces, I wrote two codes def.s90 and checks.s90 that are publicly available online [31].

Acknowledgments

I am particularly grateful to Michael Wilson for several conversations about the exocytosis of neurotransmitters. I also am grateful to Samantha Schwartz, Toby Tolley, and Vaibhav Madhok for their comments, to Leonid Chernomordik for tips about electroporation, to Gisela Tümmann for sharing her data, to Sergio Hassan for advice about the NaCl potential, to Pavel Jungwirth for advice on guanidinium groups, to John Connor and Karlheinz Hilber for explaining the status of measurements of the membrane potential of mouse myoblast cells, to Paul Robbins for sending me some of his images, to Jean Vance for information about mammalian cells deficient in the synthesis of phosphatidylinerine, and to James Thomas for several useful conversations. Thanks also to H. Berg, S. Bezzukov, H. Bryant, P. Cahill, D. Cromer, G. Herling, T. Hess, S. Koch, V. Madhok, M. Malik, A. Parsegian, B. B. Rivers, K. Thickman, and T. Tolley for useful conversations, and to K. Dill, S. Dowdy, S. Henry, K. Hilber, A. Pasquinelli, B. Salzberg, D. Sergatskov, L. Sillerud, A. Strongin, R. Tsien, J. Vance, and A. Ziegler for helpful e-mail.

[31] Cahill, K. Fortran 90 codes for this paper. http://bio.phys.unm.edu/lipidBilayer