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Its derivatives, which we’ll call P⌧
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In terms of them, the change in the action is
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The total ⌧ -derivative integrates to a term involving the variation �Xµ which
we require to vanish at the initial and final values of ⌧ . So we drop that
term and find that the net change in the action is
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Thus the equations of motion for the string are
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but the action is stationary only if the boundary conditions

�Xµ(⌧,�1)P�
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are satisfied for all ⌧ and each µ. These are conditions on the ends of open
strings; closed strings satisfy them automatically.
The boundary conditions (19.15) are 2D = 2(d+1) conditions — one for

each end �⇤ of the string and each dimension µ of space-time:

�Xµ(⌧,�⇤)P�
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A Dirichlet boundary condition fixes a spatial component at an end
of the string by

Ẋi(⌧,�⇤) = 0 (19.17)

or equivalently by �Xµ(⌧,�⇤) = 0. The time component X0 can not have a
vanishing ⌧ derivative, so it must obey a free-endpoint boundary con-
dition

P�
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