We now make the gauge transformation
\[A'_b(x) = A_b(x) + \partial_b \Lambda(x) \quad \text{and} \quad \psi'(x) = e^{i q \Lambda(x)} \psi(x) \quad (16.169) \]
and replace the fields \(A_b(x) \) and \(\psi(x) \) everywhere in the numerator and (separately) in the denominator in the ratio (16.168) of path integrals by their gauge transforms (16.169) \(A'_b(x) \) and \(\psi'(x) \). This change of variables changes nothing; it’s like replacing \(\mathcal{R} \int f(x) \, dx \) by \(\mathcal{R} \int f(y) \, dy \), and so
\[
\langle \Omega | \mathcal{T} [\mathcal{O}_1 \ldots \mathcal{O}_n] | \Omega \rangle = \langle \Omega | \mathcal{T} [\mathcal{O}_1 \ldots \mathcal{O}_n] | \Omega' \rangle \quad (16.170)
\]
in which the prime refers to the gauge transformation (16.169).

We’ve seen that the action \(S \) is gauge invariant. So is the measure \(DA \, D\psi \), and we now restrict ourselves to operators \(\mathcal{O}_1 \ldots \mathcal{O}_n \) that are gauge invariant. So in the right-hand side of equation (16.170), the replacement of the fields by their gauge transforms affects only the term \(\delta [\nabla \cdot A] \) that enforces the Coulomb-gauge condition
\[
\langle \Omega | \mathcal{T} [\mathcal{O}_1 \ldots \mathcal{O}_n] | \Omega \rangle = \frac{\int \mathcal{O}_1 \ldots \mathcal{O}_n \, e^{i S} \, \delta [\nabla \cdot A + \Delta \Lambda] \, DA \, D\psi}{\int e^{i S} \, \delta [\nabla \cdot A + \Delta \Lambda] \, DA \, D\psi}. \quad (16.171)
\]

We now have two choices. If we integrate over all gauge functions \(\Lambda(x) \) in both the numerator and the denominator of this ratio (16.171), then apart from over-all constants that cancel, the mean value in the vacuum of the time-ordered product is the ratio
\[
\langle \Omega | \mathcal{T} [\mathcal{O}_1 \ldots \mathcal{O}_n] | \Omega \rangle = \frac{\int \mathcal{O}_1 \ldots \mathcal{O}_n \, e^{i S} \, DA \, D\psi}{\int e^{i S} \, DA \, D\psi} \quad (16.172)
\]
in which we integrate over all matter fields, gauge fields, and gauges. That is, we do not fix the gauge.

The analogous formula for the euclidean time-ordered product is
\[
\langle \Omega | \mathcal{T}_e [\mathcal{O}_1 \ldots \mathcal{O}_n] | \Omega \rangle = \frac{\int \mathcal{O}_1 \ldots \mathcal{O}_n \, e^{- S_e} \, DA \, D\psi}{\int e^{- S_e} \, DA \, D\psi} \quad (16.173)
\]
in which the euclidean action \(S_e \) is the space-time integral of the energy density. This formula is quite general; it holds in nonabelian gauge theories and is important in lattice gauge theory.

Our second choice is to multiply the numerator and the denominator