652 Path Integrals
The time-ordered product of two fields, as in (16.87), is the sum
T [d(z1)d(x2)] = O(a] — 23)(a1)P(a2) + 0(xh — 2Y)d(x2)d(x1). (16.120)
Between two factors of exp(—itH), it is for t1 > to
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So by the logic that led to the path-integral formulas (16.112) and (16.117),
we can write a matrix element of the time-ordered product (16.120) as
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in which we integrate over fields that go from ¢’ at time —t to ¢ at time ¢.
The time-ordered product of any combination of fields is then
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(16.122)
Like the position eigenstates |¢') of quantum mechanics, the eigenstates
|¢') are states of infinite energy that overlap most states. Yet we often are
interested in the ground state |0) or in states of a few particles. To form
such matrix elements, we multiply both sides of equations (16.117 & 16.122)
by (0]¢”)(¢'|0) and integrate over ¢’ and ¢”. Since the ground state is a
normalized eigenstate of the hamiltonian H|0) = Ep|0) with eigenvalue Ej,
we find from (16.117)
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and from (16.122) suppressing the differentials D¢"” D¢’

e 20 (O[T [¢(a1) ... $a)] [0) = / (O1¢") (1) .. $(aa) €91 {¢]0) D,
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The mean value in the ground state of a time-ordered product of field oper-
ators is then a ratio of these path integrals
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in which factors involving Fy have canceled and the integration is over all

O[T [p(z1) ... p(xn)] [0) = (16.125)



