
652 Path Integrals

The time-ordered product of two fields, as in (16.87), is the sum
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Between two factors of exp(�itH), it is for t
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So by the logic that led to the path-integral formulas (16.112) and (16.117),
we can write a matrix element of the time-ordered product (16.120) as
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in which we integrate over fields that go from �0 at time �t to �00 at time t.
The time-ordered product of any combination of fields is then
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Like the position eigenstates |q0i of quantum mechanics, the eigenstates

|�0i are states of infinite energy that overlap most states. Yet we often are
interested in the ground state |0i or in states of a few particles. To form
such matrix elements, we multiply both sides of equations (16.117 & 16.122)
by h0|�00ih�0|0i and integrate over �0 and �00. Since the ground state is a
normalized eigenstate of the hamiltonian H|0i = E

0

|0i with eigenvalue E
0

,
we find from (16.117)Z
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and from (16.122) suppressing the di↵erentials D�00D�0
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The mean value in the ground state of a time-ordered product of field oper-
ators is then a ratio of these path integrals
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in which factors involving E
0

have canceled and the integration is over all


