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Thus U(g) cannot change E or j, and so

<E,’j/7m,|U(g)|E?j’ m> = 5E’E5j’]<]'m,|U(g)|j'm> = 5E/E6]’]D7(i2m(g)
(10.13)
The matrix element (10.11) is a single sum over F and j in which the
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WU = Y (S|E,j,m"\ DY) (9)(E, j,m|v). (10.14)
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irreducible representations Dg (g) of the rotation group SU(2) appear

This is how the block-diagonal form (10.7) usually appears in calculations.
The matrices Dq(?i,)m(g) inherit the unitarity of the operator U(g). O

10.4 Subgroups

If all the elements of a group S also are elements of a group G, then S is a
subgroup of G. Every group G has two trivial subgroups—the identity
element e and the whole group G itself. Many groups have more interesting
subgroups. For example, the rotations about a fixed axis is an abelian
subgroup of the group of all rotations in 3-dimensional space.

A subgroup S C G is an invariant subgroup if every element s of the
subgroup S is left inside the subgroup under the action of every element g
of the whole group G, that is, if

g lsg=s¢€8 forall geg. (10.15)
This condition often is written as g=1Sg = S for all g € G or as
Sg=gS forall ged. (10.16)

Invariant subgroups also are called normal subgroups.
A set C' C G is called a conjugacy class if it’s invariant under the action
of the whole group G, that is, if Cg =g¢C or

g lCg=C forallgedG. (10.17)

A subgroup that is the union of a set of conjugacy classes is invariant.
The center C of a group G is the set of all elements ¢ € G that commute
with every element g of the group, that is, their commutators

[c,g] =cg—gc=0 (10.18)

vanish for all g € G.
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Example 10.8 (Centers Are Abelian Subgroups) Does the center C always
form an abelian subgroup of its group G7 The product cice of any two
elements ¢; and ¢y of the center commutes with every element g of G since
c1cog = c1gce = gcice. So the center is closed under multiplication. The
identity element e commutes with every g € G, so e € C. If ¢ € C, then
g = gc for all g € G, and so multiplication of this equation from the left
and the right by ¢! gives g/ ! = ¢/~!¢, which shows that ¢~' € C. The
subgroup C'is abelian because each of its elements commutes with all the
elements of G including those of C' itself. O

So the center of any group always is one of its abelian invariant subgroups.
The center may be trivial, however, consisting either of the identity or of
the whole group. But a group with a nontrivial center can not be simple or
semisimple (section 10.23).

10.5 Cosets

If H is a subgroup of a group G, then for every element g € G the set of
elements Hg = {hglh € H,g € G} is a right coset of the subgroup
H C G. (Here C means is a subset of or equivalently is contained in.)

If H is a subgroup of a group G, then for every element g € G the set of
elements gH is a left coset of the subgroup H C G.

The number of elements in a coset is the same as the number of elements
of H, which is the order of H.

An element g of a group G is in one and only one right coset (and in one
and only one left coset) of the subgroup H C G. For suppose instead that g
were in two right cosets g € Hg; and g € Hgs, so that g = h1g1 = hage for
suitable hy, ho € H and g1, g2 € G. Then since H is a (sub)group, we have
go = h;lhlgl = hsg1, which says that go € Hg;. But this means that every
element hgs € Hgo is of the form hgs = hhszgr = hgg1 € Hg1. So every
element hgo € Hgo is in Hgy: the two right cosets are identical, Hg; = Hgs.

The right (or left) cosets are the points of the quotient coset space
G/H.

If H is an invariant subgroup of G, then by definition (10.16) Hg = gH
for all g € G, and so the left cosets are the same sets as the right cosets. In
this case, the coset space G/H is itself a group with multiplication defined



