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When ↵ = 0, the Helmholtz equation reduces to the Laplace equation
4V = 0 of electrostatics which the simpler functions

Vk,n(⇢,�, z) = Jn(k⇢)e
±in�e±kz and Vk,n(⇢,�, z) = Jn(ik⇢)e

±in�e±ikz

(9.34)
satisfy.

The product i�⌫ J⌫(ik⇢) is real and is known as the modified Bessel
function

I⌫(k⇢) ⌘ i�⌫ J⌫(ik⇢). (9.35)

It occurs in various solutions of the di↵usion equation D4� = �̇. The
function V (⇢,�, z) = B(⇢)�(�)Z(z) satisfies
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if B(⇢) obeys Bessel’s equation
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and � and Z respectively satisfy

� d2�

d�2
= n2�(�) and

d2Z
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= k2Z(z) (9.38)

or if B(⇢) obeys the Bessel equation
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and � and Z satisfy

� d2�

d�2
= n2�(�) and

d2Z

dz2
= �k2Z(z). (9.40)

In the first case (9.37 & 9.38), the solution V is

Vk,n(⇢,�, z) = In(
p
↵2 � k2 ⇢)e±in�e±kz (9.41)

while in the second case (9.39 & 9.40), it is

Vk,n(⇢,�, z) = In(
p
↵2 + k2 ⇢)e±in�e±ikz. (9.42)

In both cases, n must be an integer if the solution is to be single valued on
the full range of � from 0 to 2⇡.


