160 Infinite Series

Example 4.12 (Planck’s Distribution) Max Planck (1858-1947) showed
that the electromagnetic energy in a closed cavity of volume V at a temper-
ature T in the frequency interval dv about v is
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in which 8 = 1/(kT), k = 1.3806503x 1023 J /K is Boltzmann’s constant,
and h = 6.626068 x 10734 Js is Planck’s constant. The total energy then

is the integral
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which we may do by letting x = Shr and using the geometric series (4.31)
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The geometric series is absolutely and uniformly convergent for z > 0, and
we may interchange the limits of summation and integration. After another
change of variables, the Gamma-function formula (5.102) gives
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It follows that the power radiated by a “black body” is proportional to the
fourth power of its temperature and to its area A

(4.97)
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in which
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is Stefan’s constant.

= 5.670400(40) x 1078 Wm 2K~ (4.99)
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The number of photons in the black-body distribution (4.94) at inverse
temperature 8 in the volume V is
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The mean energy (E) of a photon in the black-body distribution (4.94) is
the energy U(B, V) divided by the number of photons N (5, V)
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or (E) ~ 2.70118 kT since Apéry’s constant ((3) is 1.2020569032 ... (Roger
Apéry, 1916-1994). 0

Example 4.13 (The Lerch Transcendent) The Lerch transcendent is
the series
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It converges when |z| < 1 and Res > 0 and Rea > 0. O
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The Bernoulli numbers B,, are defined by the infinite series
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for the generating function z/(e” —1). They are the successive derivatives
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