
92 Fourier Series

Moreover if f (k+1) is piecewise continuous, then
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Since f (k+1)(x) is piecewise continuous on the closed interval [�⇡,⇡], it is
bounded there in absolute value by, let us say, M . So the Fourier coe�cients
of a Ck periodic function with f (k+1) piecewise continuous are bounded by
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We often can carry this derivation one step further. In most simple exam-
ples, the piecewise continuous periodic function f (k+1)(x) actually is piece-
wise continuously di↵erentiable between its successive jumps at xj . In this
case, the derivative f (k+2)(x) is a piecewise continuous function plus a sum
of a finite number of delta functions with finite coe�cients. Thus we can
integrate once more by parts. If for instance the function f (k+1)(x) jumps
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j , then its Fourier coe�cients are
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in which the subscript s means that we’ve separated out the delta functions.
The Fourier coe�cients then are bounded by

|fn| 
2⇡M

nk+2

(2.58)

in which M is related to the maximum absolute values of f (k+2)

s (x) and

of the �f (k+1)

j . The Fourier series of periodic Ck functions converge very
rapidly if k is big.

Example 2.6 (Fourier Series of a C0 Function) The function defined by
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is continuous on the interval [�⇡,⇡] and its first derivative is piecewise


