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1 Glauber’s identity
First we define
f(z)= e*A Be™*4

whose derivative is

f'(z) = e¥4[A, Ble 4.

Now we assume that
[A,[A, B]] = 0= [B,[A, B]].

Then

f'(z) = e**A, Ble™** = [A, B].

So integrating, we find
1

FO) =fO)+ [ fi(z)dz

0
e“Be ™ = B+ [A, B].

Now we define
g(y) = e*tev”.



Its derivative is

d(y) = AevevP 4 ¥4 BevB, (7)
But
e Be™v = B + y[A, B] (8)
or
eV B = (B +y[A, B])e*. (9)
So
d'(y) = Ae?de?P 4 v Ber® = (A+ B+ y[A, B))e?'e?” = (A + B+ y[A, B]) g(y). (10)

The key point now is that all the operators commute with each other. So we can just integrate this equation
dg

g

Ing(y)=(A+B)y+ = [A B]y?

:mg:/M+B+MABD@ -
11

to find
gly) = eIl (12)
Setting y = 1 gives
eAtB = eAeBeal 4Bl (13)
or
eAeB — A+B5[AB] (14)
One also has
elel = eBeleM Bl (15)

For arbitrary A and B, the more general Baker-Campbell-Hausdorff-Zassenhaus identity is

HXHY) _ X 1Y efé[x,m £ 0y, [X,YJ4[X,[X,Y]]))

et e e T S (XYLXLXB{XYLXLYH3[[X,Y]YLY]) | ) (16)



2 Wilson’s action

Consider a square of side a, called the lattice spacing, in the i—j plane with vertices at

v=v—a3(i+7)
U2:l’+a%(%—j) (17)
vy=x+as(i+])
mzx—a%(%—}).
4 3
1 2
Figure 1: default
Put gauge-field matrices on the four sides of the little square, called a plaquette,
A12 = ZA?(.I‘ — a%j) tb
b 15
A23 —ZAj $+a52) tb (18)

(
A43 = ZA?(LU + a%j) tb = —A43

A14 = ZA?([I) —a % %) tb = —A14
in which the matrices ¢, are the n X n generators of the gauge group. They obey the commutation relations

[taatb] = ifabc te (19)

3



in which the f,. are the totally antisymmetric structure constants.
We now form the product

U = 6aA12 6aA23 6—aA43 e—aA14

1 1
eaA12+aA23+ 5!12 [A12,A23] e—aA43 —aA14+§a2 [A43,A14]

~
~

in which we dropped from equalities to approximations that are valid to order a?. Now

Ay = zAf(:L' — a%j) ty ~ i’(:r) ty — liaB-Ab(:v) t
Aoz :iA?(x—l—a%E) ty ~ iAN (@) ty + 31 a 0 A%(x)
A =iAl(v+ali)ty ~iAl(x) ty + 2ia0;Al(z) ty
A14—iA?(x—a%i)tb g(w)tb—%ia&-/lg(x)tb

to first order in the lattice spacing a. So to order a? we have
a2 [A127 A23] =~ a2 [ZAf(ZL’) tb, ZA? (l’) tb]
a?[Ays, An] = a®[iAb(2) ty, @A?(x) ty].

That is,
CL2 [A127 A23] ~ G2 [A43, A14] ~ a2 [ZA?(Z') tb, ZA?(Z') tb]

Again to order a?, we have

ais + afss ~ iaAl(z)t, — $ia® 0;A0(x) b, + iaAé’-( )ty + Sia® 8-Ab-( )ty
—aAsz — aA~ —iaAl(x)t, — 2ia® 0;A(x) ty — ia A’ ")ty + 5 ia’0; Ab( ) to,

and so to order a? the commutator

(A1 + adgs, —aAys — aAy] ~ [iaAb(x)t, + z'aA?(x) ty, —iaAY(z) b, — z'aA?(x) tp)) =0

(20)

(21)

(25)



vanishes. So when we combine the two exponentials is our formula (20), we get no new commutators to order
a?, and the term of order a in the exponential vanishes:

CLA12 =+ CLA23 — CLA43 — CLA14 ~ —1 CL2 8JA5(JI) tb +1 (12 &Aé’(x) tb. (26)
Thus, again to order a2, the product of exponentials around the plaquette is
U ~ eaA12+aA23+a2[A12,A23}—aA43—aA14+a2[1443,A14}

— e—i a? 0; Ab(z) ty+i a? &;Aé’- (z) ty+a?[1AL () ty, iA;’- (z) tp] (27)

= oxp {a®[0; + 1A} (x) ty, 0; + i AN (x) 1]} = @ Fij (@)
in which
Fyj(x) = i0;A] () ty — i0; A7 (x) t. — AY(x) Af(x) [to, t.]
— 10, A% () t, — 0, A5 () t. — Ab( ) A5(2) i fieal
= 10, A3 (x) ty — 10, A7 () to — AY(x) Af(2) i freata
=i [0;A%(x) — 0;AL () — fune AY(x) AS(x)] t, = i Fiit,

Interest focuses on semi-simple gauge groups, that is, on groups that have no invariant abelian subgroups.
The generators t, of semi-simple gauge groups are traceless. Thus, the trace of the Faraday tensor

TrFy = Tri Fi;t, =i Fj; Trt, = 0 (29)

(28)

vanishes for any semi-simple gauge group, such as SU(N) or SO(N).h The generators are n X n hermitian
matrices that can be chosen to obey the trace relation

Tr(tatb) = kéab (30)

where k is a positive constant that (unlike the structure constants fu.) depends upon the representation of
the group. It follows that to lowest order in the lattice spacing a
a2 - (x a
TrU = Tre® @ = Ty [1+ a® Fyj(z) + 3a* Fj (z)] =n— La'Tr [Fij(a:)taﬂl}tb}
ka*

a a a 2
=n—a' Fj(x) Fj Tr [tat] = n — §a' Fj(x) F kdw = n— == [Fi(z)]"

(31)



The euclidian action of the continuum (pure) gauge theory is

3 [ e da =3 [ (5] e )

So when we sum over all the plaquettes of a space-time lattice, a* = d*z, and we count each plaquette
once. But each plaquette bounds two (d = 4) hypercubes, and the action of each hypercube is the sum of the
averages of the plaquette actions of opposite faces of the hypercube. So the continuum action is approximately
the sum over all plaquettes

Y= Ypn-10) = 5 [Fe =5 [ () a @

Usually, one makes a coupling constant g explicit by replacing A by gA. The actions then are

at o g2 1 a( N2 4 1 a( 12 4
—ZSD—Z k<n_w> %32—92[12](@] =5 . B de =g [ F@]de 3y



