Homework 8

(1) Use the fact that Pauli’s matrices satisfy
\[\sigma_i \sigma_j = \delta_{ij} + i \epsilon_{ijk} \sigma_k \]
(1)
to show that the Dirac matrices chosen as
\[\gamma^0 = -i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \gamma = -i \begin{pmatrix} 0 & \sigma \\ -\sigma & 0 \end{pmatrix} \]
(2)
obey the he anticommutation relation
\[\{ \gamma^a, \gamma^b \} \equiv \gamma^a \gamma^b + \gamma^b \gamma^a = 2 \eta^{ab} I \]
(3)
in which \(I \) is the 4 \(\times \) 4 identity matirx and \(\eta \) is the 4 \(\times \) 4 diagonal matrix with \(\eta^{00} = -1 \) and \(\eta^{jj} = 1 \) for \(j = 1, 2, \) and 3. That is
\[\eta = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]
(4)

(2) The fancy generators \(J^{ab} \) of the Lorentz group are related to the simple generators \(J \) and \(K \) of the Lorentz group by
\[J^{ij} = \epsilon_{ijk} J_k \quad \text{and} \quad J^{0j} = K_j. \]
(5)
We can write the fancy generators \(J^{ab} \) as commutators of gamma matrices
\[J^{ab} = -\frac{i}{4} [\gamma^a, \gamma^b]. \]
(6)
Express the simple generators in terms of the gamma matrices.

(3) Find explicit formulas for the simple generators of the Lorentz group \(J \) and \(K \). You can use a 2 \(\times \) 2 notation in which the Pauli matrices and the 2 \(\times \) 2 identity matrix are the entries. For instance, you should find
\[J_3 = \frac{1}{2} \begin{pmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{pmatrix}. \]
(7)
Tentatively, this homework is due on 14 xi 2012.