Convention, Notation, and Units

For the same reason that we no longer use a certain king’s feet to measure distance, we use natural units in which the speed of light c and the Dirac symbol \hbar are both set equal to 1. Planck made the profound observation that in natural units all physical quantities can be expressed in terms of the Planck mass $M_{\text{Planck}} \equiv \frac{1}{\sqrt{G_{\text{Newton}}}} \approx 10^{19}\text{Gev}$. The quantities c and \hbar are not so much fundamental constants as conversion factors. In this light, I am genuinely puzzled by condensed matter physicists carrying around Boltzmann’s constant k, which is no different from the conversion factor between feet and meters.

Spacetime coordinates x^μ are labeled by Greek indices ($\mu = 0, 1, 2, 3$) with the time coordinate x^0 sometimes denoted by t. Space coordinates x^i are labeled by Latin indices ($i = 1, 2, 3$) and $\partial_\mu \equiv \partial/\partial x^\mu$. We use a Minkowski metric $\eta^{\mu\nu}$ with signature $(+, -, -, -)$ so that $\eta^{00} = +1$. We write $\eta^{\mu\nu}\partial_\mu\varphi\partial_\nu\varphi = \partial_\mu\varphi\partial_\mu\varphi = (\partial\varphi)^2 = (\partial\varphi/\partial t)^2 - \sum_i (\partial\varphi/\partial x^i)^2$. The metric in curved spacetime is always denoted by $g^{\mu\nu}$, but often I will also use $g^{\mu\nu}$ for the Minkowski metric when the context indicates clearly that we are in flat spacetime.

Since I will be talking mostly about relativistic quantum field theory in this book I will without further clarification use a relativistic language. Thus, when I speak of momentum, unless otherwise specified, I mean energy and momentum. Also since $\hbar = 1$, I will not distinguish between wave vector k and momentum, and between frequency ω and energy.

In local field theory I deal primarily with the Lagrangian density L and not the Lagrangian $L = \int d^3x \ L$. As is common practice in the literature and in oral discussion, I will often abuse terminology and simply refer to L as the Lagrangian. I will commit other minor abuses such as writing I instead of I for the unit matrix. I use the same symbol φ for the Fourier transform $\varphi(k)$ of a function $\varphi(x)$ whenever there is no risk of confusion, as is almost always the case. I prefer an abused terminology to cluttered notation and unbearable pedantry.

The symbol \ast denotes complex conjugation, and \dagger hermitean conjugation: The former applies to a number and the latter to an operator. I also use the notation c.c. and h.c. Often
when there is no risk of confusion I abuse the notation, using † when I should use *. For instance, in a path integral, bosonic fields are just number-valued fields, but nevertheless I write ϕ† rather than ϕ*. For a matrix M, then of course M^\dagger and M^* should be carefully distinguished from each other.

I made an effort to get factors of 2 and π right, but some errors will be inevitable.
Quantum Field Theory in a Nutshell
This page intentionally left blank
Part I Motivation and Foundation
This page intentionally left blank
Who needs quantum field theory?

Quantum field theory arose out of our need to describe the ephemeral nature of life.

No, seriously, quantum field theory is needed when we confront simultaneously the two great physics innovations of the last century of the previous millennium: special relativity and quantum mechanics. Consider a fast moving rocket ship close to light speed. You need special relativity but not quantum mechanics to study its motion. On the other hand, to study a slow moving electron scattering on a proton, you must invoke quantum mechanics, but you don’t have to know a thing about special relativity.

It is in the peculiar confluence of special relativity and quantum mechanics that a new set of phenomena arises: Particles can be born and particles can die. It is this matter of birth, life, and death that requires the development of a new subject in physics, that of quantum field theory.

Let me give a heuristic discussion. In quantum mechanics the uncertainty principle tells us that the energy can fluctuate wildly over a small interval of time. According to special relativity, energy can be converted into mass and vice versa. With quantum mechanics and special relativity, the wildly fluctuating energy can metamorphose into mass, that is, into new particles not previously present.

Write down the Schrödinger equation for an electron scattering off a proton. The equation describes the wave function of one electron, and no matter how you shake and bake the mathematics of the partial differential equation, the electron you follow will remain one electron. But special relativity tells us that energy can be converted to matter: If the electron is energetic enough, an electron and a positron (“the antielectron”) can be produced. The Schrödinger equation is simply incapable of describing such a phenomenon. Nonrelativistic quantum mechanics must break down.

You saw the need for quantum field theory at another point in your education. Toward the end of a good course on nonrelativistic quantum mechanics the interaction between radiation and atoms is often discussed. You would recall that the electromagnetic field is
treated as a field; well, it is a field. Its Fourier components are quantized as a collection of harmonic oscillators, leading to creation and annihilation operators for photons. So there, the electromagnetic field is a quantum field. Meanwhile, the electron is treated as a poor cousin, with a wave function $\Psi_1(x)$ governed by the good old Schrödinger equation. Photons can be created or annihilated, but not electrons. Quite aside from the experimental fact that electrons and positrons could be created in pairs, it would be intellectually more satisfying to treat electrons and photons, as they are both elementary particles, on the same footing.

So, I was more or less right: Quantum field theory is a response to the ephemeral nature of life.

All of this is rather vague, and one of the purposes of this book is to make these remarks more precise. For the moment, to make these thoughts somewhat more concrete, let us ask where in classical physics we might have encountered something vaguely resembling the birth and death of particles. Think of a mattress, which we idealize as a 2-dimensional lattice of point masses connected to each other by springs (fig. I.1.1). For simplicity, let us focus on the vertical displacement $q_a(t)$ of the point masses and neglect the small horizontal movement. The index a simply tells us which mass we are talking about. The Lagrangian is then

$$L = \frac{1}{2} \left(\sum_a m \dot{q}_a^2 - \sum_{a,b} k_{ab} q_a q_b - \sum_{a,b,c} g_{abc} q_a q_b q_c - \cdots \right)$$

(1)

Keeping only the terms quadratic in q (the “harmonic approximation”) we have the equations of motion $\ddot{q}_a = - \sum_b k_{ab} q_b$. Taking the q’s as oscillating with frequency ω, we have $\sum_b k_{ab} q_b = m \omega^2 q_a$. The eigenfrequencies and eigenmodes are determined, respectively, by the eigenvalues and eigenvectors of the matrix k. As usual, we can form wave packets by superposing eigenmodes. When we quantize the theory, these wave packets behave like particles, in the same way that electromagnetic wave packets when quantized behave like particles called photons.
Since the theory is linear, two wave packets pass right through each other. But once we include the nonlinear terms, namely the terms cubic, quartic, and so forth in the \(q \)'s in (1), the theory becomes anharmonic. Eigenmodes now couple to each other. A wave packet might decay into two wave packets. When two wave packets come near each other, they scatter and perhaps produce more wave packets. This naturally suggests that the physics of particles can be described in these terms.

Quantum field theory grew out of essentially these sorts of physical ideas.

It struck me as limiting that even after some 75 years, the whole subject of quantum field theory remains rooted in this harmonic paradigm, to use a dreadfully pretentious word. We have not been able to get away from the basic notions of oscillations and wave packets. Indeed, string theory, the heir to quantum field theory, is still firmly founded on this harmonic paradigm. Surely, a brilliant young physicist, perhaps a reader of this book, will take us beyond.

Condensed matter physics

In this book I will focus mainly on relativistic field theory, but let me mention here that one of the great advances in theoretical physics in the last 30 years or so is the increasingly sophisticated use of quantum field theory in condensed matter physics. At first sight this seems rather surprising. After all, a piece of “condensed matter” consists of an enormous swarm of electrons moving nonrelativistically, knocking about among various atomic ions and interacting via the electromagnetic force. Why can’t we simply write down a gigantic wave function \(\Psi(x_1, x_2, \ldots, x_N) \), where \(x_j \) denotes the position of the \(j \)th electron and \(N \) is a large but finite number? Okay, \(\Psi \) is a function of many variables but it is still governed by a nonrelativistic Schrödinger equation.

The answer is yes, we can, and indeed that was how solid state physics was first studied in its heroic early days (and still is in many of its subbranches).

Why then does a condensed matter theorist need quantum field theory? Again, let us first go for a heuristic discussion, giving an overall impression rather than all the details. In a typical solid, the ions vibrate around their equilibrium lattice positions. This vibrational dynamics is best described by so-called phonons, which correspond more or less to the wave packets in the mattress model described above.

This much you can read about in any standard text on solid state physics. Furthermore, if you have had a course on solid state physics, you would recall that the energy levels available to electrons form bands. When an electron is kicked (by a phonon field say) from a filled band to an empty band, a hole is left behind in the previously filled band. This hole can move about with its own identity as a particle, enjoying a perfectly comfortable existence until another electron comes into the band and annihilates it. Indeed, it was with a picture of this kind that Dirac first conceived of a hole in the “electron sea” as the antiparticle of the electron, the positron.

We will flesh out this heuristic discussion in subsequent chapters in parts V and VI.
Marriages

To summarize, quantum field theory was born of the necessity of dealing with the marriage of special relativity and quantum mechanics, just as the new science of string theory is being born of the necessity of dealing with the marriage of general relativity and quantum mechanics.
The professor’s nightmare: a wise guy in the class

As I noted in the preface, I know perfectly well that you are eager to dive into quantum field theory, but first we have to review the path integral formalism of quantum mechanics. This formalism is not universally taught in introductory courses on quantum mechanics, but even if you have been exposed to it, this chapter will serve as a useful review. The reason I start with the path integral formalism is that it offers a particularly convenient way of going from quantum mechanics to quantum field theory. I will first give a heuristic discussion, to be followed by a more formal mathematical treatment.

Perhaps the best way to introduce the path integral formalism is by telling a story, certainly apocryphal as many physics stories are. Long ago, in a quantum mechanics class, the professor droned on and on about the double-slit experiment, giving the standard treatment. A particle emitted from a source S (fig. I.2.1) at time $t = 0$ passes through one or the other of two holes, A_1 and A_2, drilled in a screen and is detected at time $t = T$ by a detector located at O. The amplitude for detection is given by a fundamental postulate of quantum mechanics, the superposition principle, as the sum of the amplitude for the particle to propagate from the source S through the hole A_1 and then onward to the point O and the amplitude for the particle to propagate from the source S through the hole A_2 and then onward to the point O.

Suddenly, a very bright student, let us call him Feynman, asked, “Professor, what if we drill a third hole in the screen?” The professor replied, “Clearly, the amplitude for the particle to be detected at the point O is now given by the sum of three amplitudes, the amplitude for the particle to propagate from the source S through the hole A_1 and then onward to the point O, the amplitude for the particle to propagate from the source S through the hole A_2 and then onward to the point O, and the amplitude for the particle to propagate from the source S through the hole A_3 and then onward to the point O.”

The professor was just about ready to continue when Feynman interjected again, “What if I drill a fourth and a fifth hole in the screen?” Now the professor is visibly losing his
patience: “All right, wise guy, I think it is obvious to the whole class that we just sum over all the holes.”

To make what the professor said precise, denote the amplitude for the particle to propagate from the source S through the hole A_i and then onward to the point O as $A(S \rightarrow A_i \rightarrow O)$. Then the amplitude for the particle to be detected at the point O is

$$A(\text{detected at } O) = \sum_i A(S \rightarrow A_i \rightarrow O)$$ (1)

But Feynman persisted, “What if we now add another screen (fig. I.2.2) with some holes drilled in it?” The professor was really losing his patience: “Look, can’t you see that you just take the amplitude to go from the source S to the hole A_i in the first screen, then to the hole B_j in the second screen, then to the detector at O, and then sum over all i and j?”

Feynman continued to pester, “What if I put in a third screen, a fourth screen, eh? What if I put in a screen and drill an infinite number of holes in it so that the screen is no longer there?” The professor sighed, “Let’s move on; there is a lot of material to cover in this course.”
But dear reader, surely you see what that wise guy Feynman was driving at. I especially enjoy his observation that if you put in a screen and drill an infinite number of holes in it, then that screen is not really there. Very Zen! What Feynman showed is that even if there were just empty space between the source and the detector, the amplitude for the particle to propagate from the source to the detector is the sum of the amplitudes for the particle to go through each one of the holes in each one of the (nonexistent) screens. In other words, we have to sum over the amplitude for the particle to propagate from the source to the detector following all possible paths between the source and the detector (fig. I.2.3).

\[
A_{\text{(particle to go from } S \text{ to } O \text{ in time } T)} = \sum_{\text{(paths)}} A_{\text{(particle to go from } S \text{ to } O \text{ in time } T \text{ following a particular path)}}
\]

(2)

Now the mathematically rigorous will surely get anxious over how \(\sum_{\text{(paths)}} \) is to be defined. Feynman followed Newton and Leibniz: Take a path (fig. I.2.4), approximate it by straight line segments, and let the segments go to zero. You can see that this is just like filling up a space with screens spaced infinitesimally close to each other, with an infinite number of holes drilled in each screen.

Fine, but how to construct the amplitude \(A_{\text{(particle to go from } S \text{ to } O \text{ in time } T \text{ following a particular path)}} \)? Well, we can use the unitarity of quantum mechanics: If we know the amplitude for each infinitesimal segment, then we just multiply them together to get the amplitude of the whole path.
In quantum mechanics, the amplitude to propagate from a point \(q_I \) to a point \(q_F \) in time \(T \) is governed by the unitary operator \(e^{-iHT} \), where \(H \) is the Hamiltonian. More precisely, denoting by \(|q\rangle \) the state in which the particle is at \(q \), the amplitude in question is just \(\langle q_F | e^{-iHT} | q_I \rangle \). Here we are using the Dirac bra and ket notation. Of course, philosophically, you can argue that to say the amplitude is \(\langle q_F | e^{-iHT} | q_I \rangle \) amounts to a postulate and a definition of \(H \). It is then up to experimentalists to discover that \(H \) is hermitean, has the form of the classical Hamiltonian, et cetera.

Indeed, the whole path integral formalism could be written down mathematically starting with the quantity \(\langle q_F | e^{-iHT} | q_I \rangle \), without any of Feynman’s jive about screens with an infinite number of holes. Many physicists would prefer a mathematical treatment without the talk. As a matter of fact, the path integral formalism was invented by Dirac precisely in this way, long before Feynman.¹

A necessary word about notation even though it interrupts the narrative flow: We denote the coordinates transverse to the axis connecting the source to the detector by \(q \), rather than \(x \), for a reason which will emerge in a later chapter. For notational simplicity, we will think of \(q \) as 1-dimensional and suppress the coordinate along the axis connecting the source to the detector.

Dirac’s formulation

Let us divide the time \(T \) into \(N \) segments each lasting \(\delta t = T/N \). Then we write

\[
\langle q_F | e^{-iHT} | q_I \rangle = \langle q_F | e^{-iH\delta t} e^{-iH\delta t} \cdots e^{-iH\delta t} | q_I \rangle
\]

Our states are normalized by \(\langle q' | q \rangle = \delta(q' - q) \) with \(\delta \) the Dirac delta function. (Recall that \(\delta \) is defined by \(\delta(q) = \int_{-\infty}^{\infty} dp/(2\pi) e^{ipq} \) and \(\int dq \delta(q) = 1 \). See appendix 1.) Now use the fact that \(|q\rangle \) forms a complete set of states so that \(\int dq |q\rangle \langle q| = 1 \). To see that the normalization is correct, multiply on the left by \(\langle q'' \rangle \) and on the right by \(|q'\rangle \), thus obtaining

\[
\int dq \delta(q'' - q) \delta(q - q') = \delta(q'' - q').
\]

Insert 1 between all these factors of \(e^{-iH\delta t} \) and write

\[
\langle q_F | e^{-iHT} | q_I \rangle = \left(\prod_{j=1}^{N-1} \int dq_j \right) \langle q_F | e^{-iH\delta t} | q_{N-1} \rangle \langle q_{N-1} | e^{-iH\delta t} | q_{N-2} \rangle \cdots \langle q_2 | e^{-iH\delta t} | q_1 \rangle \langle q_1 | e^{-iH\delta t} | q_I \rangle
\]

(3)

Focus on an individual factor \(\langle q_{j+1} | e^{-iH\delta t} | q_j \rangle \). Let us take the baby step of first evaluating it just for the free-particle case in which \(H = \hat{p}^2/2m \). The hat on \(\hat{p} \) reminds us that it is an operator. Denote by \(|p\rangle \) the eigenstate of \(\hat{p} \), namely \(\hat{p} |p\rangle = p |p\rangle \). Do you remember from your course in quantum mechanics that \(\langle q | p \rangle = e^{ipq} \)? Sure you do. This

¹ For the true history of the path integral, see p. xv of my introduction to R. P. Feynman, QED: The Strange Theory of Light and Matter.
just says that the momentum eigenstate is a plane wave in the coordinate representation. (The normalization is such that $\int (dp/2\pi) |p\rangle \langle p| = 1$. Again, to see that the normalization is correct, multiply on the left by $|q\rangle$ and on the right by $|q\rangle$, thus obtaining $\int (dp/2\pi)e^{ip(q'-q)} = \delta(q' - q)$.) So again inserting a complete set of states, we write

$$\langle q_{j+1} | e^{-i\delta t (\hat{p}^2/2m)} | q_j \rangle = \int \frac{dp}{2\pi} \langle q_{j+1} | e^{-i\delta t (\hat{p}^2/2m)} | p \rangle \langle p | q_j \rangle$$

$$= \int \frac{dp}{2\pi} e^{-i\delta t (\hat{p}^2/2m)} \langle q_{j+1} | p \rangle \langle p | q_j \rangle$$

$$= \int \frac{dp}{2\pi} e^{-i\delta t (\hat{p}^2/2m)} e^{ip(q_{j+1} - q_j)}$$

Note that we removed the hat from the momentum operator in the exponential: Since the momentum operator is acting on an eigenstate, it can be replaced by its eigenvalue. Also, we are evidently working in the Heisenberg picture.

The integral over p is known as a Gaussian integral, with which you may already be familiar. If not, turn to appendix 2 to this chapter.

Doing the integral over p, we get (using (21))

$$\langle q_{j+1} | e^{-i\delta t (\hat{p}^2/2m)} | q_j \rangle = \left(\frac{-im}{2\pi \delta t}\right)^{1/2} \left\{ \delta \left[m/2 \Sigma_{j=0}^{N-1} (q_{j+1} - q_j) \right] / \delta t \right\}$$

$$= \left(\frac{-im}{2\pi \delta t}\right)^{1/2} e^{i\delta t (m/2) \Sigma_{j=0}^{N-1} (q_{j+1} - q_j) / \delta t^2}$$

Putting this into (3) yields

$$\langle q_F | e^{-iHT} | q_I \rangle = \left(\frac{-im}{2\pi \delta t}\right)^{1/2} \left\{ \prod_{k=1}^{N-1} \int dq_k \right\} e^{i\delta t (m/2) \Sigma_{j=0}^{N-1} (q_{j+1} - q_j) / \delta t^2}$$

with $q_0 \equiv q_I$ and $q_N \equiv q_F$.

We can now go to the continuum limit $\delta t \to 0$. Newton and Leibniz taught us to replace $[(q_{j+1} - q_j) / \delta t]^2$ by \dot{q}^2, and $\delta t \Sigma_{j=0}^{N-1} \delta t$ by $\int_0^T dt$. Finally, we define the integral over paths as

$$\int Dq(t) = \lim_{N \to \infty} \left(\frac{-im}{2\pi \delta t}\right)^{1/2} \left\{ \prod_{k=1}^{N-1} \int dq_k \right\}$$

We thus obtain the path integral representation

$$\langle q_F | e^{-iHT} | q_I \rangle = \int Dq(t) e^{i \int_0^T dt \frac{1}{2} \dot{q}^2}$$

(4)

This fundamental result tells us that to obtain $\langle q_F | e^{-iHT} | q_I \rangle$ we simply integrate over all possible paths $q(t)$ such that $q(0) = q_I$ and $q(T) = q_F$.

As an exercise you should convince yourself that had we started with the Hamiltonian for a particle in a potential $H = \hat{p}^2/2m + V(\hat{q})$ (again the hat on \hat{q} indicates an operator) the final result would have been

$$\langle q_F | e^{-iHT} | q_I \rangle = \int Dq(t) e^{i \int_0^T dt \left(\frac{1}{2} \dot{q}^2 - V(q) \right)}$$

(5)
We recognize the quantity \(\frac{1}{2} m \dot{q}^2 - V(q) \) as just the Lagrangian \(L(\dot{q}, q) \). The Lagrangian has emerged naturally from the Hamiltonian! In general, we have

\[
\langle q_F | e^{-iHT} | q_I \rangle = \int Dq(t) e^{i \int_0^T dt L(\dot{q}, q)}
\]

To avoid potential confusion, let me be clear that \(t \) appears as an integration variable in the exponential on the right-hand side. The appearance of \(t \) in the path integral measure \(Dq(t) \) is simply to remind us that \(q \) is a function of \(t \) (as if we need reminding). Indeed, this measure will often be abbreviated to \(Dq \). You might recall that \(\int_{T_0} dt L(\dot{q}, q) \) is called the action \(S(q) \) in classical mechanics. The action \(S \) is a functional of the function \(q(t) \).

Often, instead of specifying that the particle starts at an initial position \(q_I \) and ends at a final position \(q_F \), we prefer to specify that the particle starts in some initial state \(I \) and ends in some final state \(F \). Then we are interested in calculating \(\langle F | e^{-iHT} | I \rangle \), which upon inserting complete sets of states can be written as

\[
\int dq_F \int dq_I \langle F | q_F \rangle \langle q_F | e^{-iHT} | q_I \rangle \langle q_I | I \rangle,
\]

which mixing Schrödinger and Dirac notation we can write as

\[
\int dq_F \int dq_I \Psi_F(q_F)^* \langle q_F | e^{-iHT} | q_I \rangle \Psi_I(q_I).
\]

In most cases we are interested in taking \(|I\rangle \) and \(|F\rangle \) as the ground state, which we will denote by \(|0\rangle \). It is conventional to give the amplitude \(\langle 0 | e^{-iHT} | 0 \rangle \) the name \(Z \).

At the level of mathematical rigor we are working with, we count on the path integral \(\int Dq(t) e^{i \int_0^T dt [\frac{1}{2} m \dot{q}^2 - V(q)]} \) to converge because the oscillatory phase factors from different paths tend to cancel out. It is somewhat more rigorous to perform a so-called Wick rotation to Euclidean time. This amounts to substituting \(t \to -it \) and rotating the integration contour in the complex \(t \) plane so that the integral becomes

\[
Z = \int Dq(t) e^{-\int_0^T dt [\frac{1}{2} m \dot{q}^2 + V(q)]},
\]

known as the Euclidean path integral. As is done in appendix 2 to this chapter with ordinary integrals we will always assume that we can make this type of substitution with impunity.

The classical world emerges

One particularly nice feature of the path integral formalism is that the classical limit of quantum mechanics can be recovered easily. We simply restore Planck’s constant \(\hbar \) in (6):

\[
\langle q_F | e^{-(i/\hbar)HT} | q_I \rangle = \int Dq(t) e^{(i/\hbar) \int_0^T dt L(\dot{q}, q)}
\]

and take the \(\hbar \to 0 \) limit. Applying the stationary phase or steepest descent method (if you don’t know it see appendix 3 to this chapter) we obtain

\[
e^{(i/\hbar) \int_0^T dt L(q_c, \dot{q}_c)}
\]

where \(q_c(t) \) is the “classical path” determined by solving the Euler-Lagrange equation \((d/dt)(\delta L/\delta \dot{q}) - (\delta L/\delta q) = 0 \) with appropriate boundary conditions.
Appendix 1

For your convenience, I include a concise review of the Dirac delta function here. Let us define a function $d_K(x)$ by

$$d_K(x) \equiv \int \frac{2}{2\pi} \frac{dk}{2\pi} e^{ikx} = \frac{1}{\pi x} \sin \frac{Kx}{2}$$

(8)

for arbitrary real values of x. We see that for large K the even function $d_K(x)$ is sharply peaked at the origin $x=0$, reaching a value of $K/2\pi$ at the origin, crossing zero at $x=2\pi/K$, and then oscillating with ever decreasing amplitude. Furthermore,

$$\int_{-\infty}^{\infty} dx \ d_K(x) = \frac{2}{\pi} \int_{0}^{\infty} dx \ \frac{Kx}{2} = \frac{2}{\pi} \int_{0}^{\infty} dy \ \sin y = 1$$

(9)

The Dirac delta function is defined by

$$\delta(x) = \lim_{K \to \infty} d_K(x).$$

Heuristically, it could be thought of as an infinitely sharp spike located at $x=0$ such that the area under the spike is equal to 1. Thus for a function $s(x)$ well-behaved around $x=a$ we have

$$\int_{-\infty}^{\infty} dx \ \delta(x-a)s(x) = s(a)$$

(10)

(By the way, for what it is worth, mathematicians call the delta function a “distribution,” not a function.)

Our derivation also yields an integral representation for the delta function that we will use repeatedly in this text:

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \ e^{ikx}$$

(11)

We will often use the identity

$$\int_{-\infty}^{\infty} dx \ \delta(f(x))s(x) = \sum_{i} \frac{s(x_i)}{|f'(x_i)|}$$

(12)

where x_i denotes the zeroes of $f(x)$ (in other words, $f(x_i) = 0$ and $f'(x_i) = df(x_i)/dx$.) To prove this, first show that $\int_{-\infty}^{\infty} dx \ \delta(bx)s(x) = \int_{-\infty}^{\infty} dx \ \frac{1}{|b|} s(0) = s(0)/|b|$. The factor of $1/b$ follows from dimensional analysis. (To see the need for the absolute value, simply note that $\delta(bx)$ is a positive function. Alternatively, change integration variable to $y = bx$: for b negative we have to flip the integration limits.) To obtain (12), expand around each of the zeroes of $f(x)$.

Another useful identity (understood in the limit in which the positive infinitesimal ϵ tends to zero) is

$$\frac{1}{x+i\epsilon} = \frac{1}{x} + i\pi \delta(x)$$

(13)

To see this, simply write $1/(x+i\epsilon) = x/(x^2 + \epsilon^2) - i\epsilon/(x^2 + \epsilon^2)$, and then note that $\epsilon/(x^2 + \epsilon^2)$ as a function of x is sharply spiked around $x=0$ and that its integral from $-\infty$ to ∞ is equal to π. Thus we have another representation of the Dirac delta function:

$$\delta(x) = \frac{1}{\pi} \frac{\epsilon}{x^2 + \epsilon^2}$$

(14)

Meanwhile, the principal value integral is defined by

$$\int dx \frac{1}{x} f(x) = \lim_{\epsilon \to 0} \int dx \frac{1}{x^2 + \epsilon^2} f(x)$$

(15)
I will now show you how to do the integral $G \equiv \int_{-\infty}^{+\infty} dx e^{-\frac{1}{2}x^2}$. The trick is to square the integral, call the dummy integration variable in one of the integrals y, and then pass to polar coordinates:

$$G^2 = \int_{-\infty}^{+\infty} dx \ e^{-\frac{1}{2}x^2} \int_{-\infty}^{+\infty} dy \ e^{-\frac{1}{2}y^2} = 2\pi \int_{0}^{+\infty} dr \ r e^{-\frac{r^2}{2}}$$

Thus, we obtain

$$\int_{-\infty}^{+\infty} dx \ e^{-\frac{1}{2}x^2} = \sqrt{2\pi} (16)$$

Believe it or not, a significant fraction of the theoretical physics literature consists of varying and elaborating this basic Gaussian integral. The simplest extension is almost immediate:

$$\int_{-\infty}^{+\infty} dx \ e^{-\frac{1}{2}ax^2} = \left(\frac{2\pi}{a}\right)^{\frac{1}{2}} (17)$$

as can be seen by scaling $x \rightarrow x/\sqrt{a}$.

Acting on this repeatedly with $-2(d/da)$ we obtain

$$\langle x^{2n} \rangle \equiv \frac{\int_{-\infty}^{+\infty} dx \ e^{-\frac{1}{2}ax^2} x^{2n}}{\int_{-\infty}^{+\infty} dx \ e^{-\frac{1}{2}ax^2}} = \frac{1}{a^n} (2n-1)(2n-3) \cdots 5 \cdot 3 \cdot 1 (18)$$

The factor $1/a^n$ follows from dimensional analysis. To remember the factor $(2n-1)!! = (2n-1)(2n-3) \cdots 5 \cdot 3 \cdot 1$ imagine $2n$ points and connect them in pairs. The first point can be connected to one of the remaining $(2n-1)$ points, the second point can now be connected to one of the remaining $(2n-3)$ points, and so on. This clever observation, due to Gian Carlo Wick, is known as Wick’s theorem in the field theory literature. Incidentally, field theorists use the following graphical mnemonic in calculating, for example, $\langle x^6 \rangle$: Write $\langle x^6 \rangle$ as $\langle \underbrace{x xxx xxx} \rangle$ and connect the x’s, for example

$$\langle \underbrace{x xxx xxx} \rangle$$

The pattern of connection is known as a Wick contraction. In this simple example, since the six x’s are identical, any one of the distinct Wick contractions gives the same value a^{-3} and the final result for $\langle x^6 \rangle$ is just a^{-3} times the number of distinct Wick contractions, namely $5 \cdot 3 \cdot 1 = 15$. We will soon come to a less trivial example, with distinct x’s, in which case distinct Wick contraction gives distinct values.

An important variant is the integral

$$\int_{-\infty}^{+\infty} dx \ e^{-\frac{1}{2}ax^2 + Jx} = \left(\frac{2\pi}{a}\right)^{\frac{1}{2}} e^{J^2/2a} (19)$$

To see this, take the expression in the exponent and “complete the square”: $-ax^2/2 + Jx = -(a/2)(x^2 - 2Jx/a) = -(a/2)(x - J/a)^2 + J^2/2a$. The x integral can now be done by shifting $x \rightarrow x + J/a$, giving the factor of $(2\pi/a)^{\frac{1}{2}}$. Check that we can also obtain (18) by differentiating with respect to J repeatedly and then setting $J = 0$.

Another important variant is obtained by replacing J by iJ:

$$\int_{-\infty}^{+\infty} dx \ e^{-\frac{1}{2}ax^2 + iJx} = \left(\frac{2\pi}{a}\right)^{\frac{1}{2}} e^{-J^2/2a} (20)$$
To get yet another variant, replace \(a \) by \(-ia\):

\[
\int_{-\infty}^{+\infty} dx \, e^{i ax^2 + iJx} = \left(\frac{2\pi i}{a} \right)^{\frac{1}{2}} e^{-iJ^2/2a}
\]

(21)

Let us promote \(a \) to a real symmetric \(N \) matrix \(A_{ij} \) and \(x \) to a vector \(x_i \) \((i, j = 1, \ldots, N)\). Then (19) generalizes to

\[
\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} dx_1 dx_2 \cdots dx_N \, e^{-\frac{1}{2}x^T A x + J^T x} = \left(\frac{2\pi i}{\det[A]} \right)^{\frac{1}{2}} e^{\frac{1}{2}J^T A^{-1} J}
\]

(22)

where \(x \cdot A \cdot x = x_i A_{ij} x_j \) and \(J \cdot x = J_i x_i \) (with repeated indices summed).

To derive this important relation, diagonalize \(A \) by an orthogonal transformation \(O \) so that \(A = O^{-1} \cdot D \cdot O \), where \(D \) is a diagonal matrix. Call \(y_i = O_{ij} x_j \). In other words, we rotate the coordinates in the \(N \)-dimensional Euclidean space we are integrating over. The expression in the exponential in the integrand then becomes

\[-\frac{1}{2} y^T \cdot D \cdot y + (O J) \cdot y.\]

Using \(\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} dx_1 \cdots dx_N = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} dy_1 \cdots dy_N \), we factorize the left-hand side of (22) into a product of \(N \) integrals, each of the form \(\int_{-\infty}^{+\infty} dy_i e^{\frac{1}{2} D_{ij} y_i^2 + (O J)_{ij} y_i} \). Plugging into (19) we obtain the right-hand side of (22), since \((O J) \cdot D^{-1} = J \cdot O^{-1} D^{-1} \cdot O = J \cdot A^{-1} \cdot J\) (where we use the orthogonality of \(O \)). (To make sure you got it, try this explicitly for \(N = 2 \).)

Putting in some \(i \)'s \((A \rightarrow -iA, J \rightarrow iJ)\), we find the generalization of (22)

\[
\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} dx_1 dx_2 \cdots dx_N \, e^{(i/2)x^T A x + iJ^T x} = \left(\frac{2\pi i}{\det[A]} \right)^{\frac{1}{2}} e^{-(i/2)J^T A^{-1} J} \]

(23)

The generalization of (18) is also easy to obtain. Differentiate (22) \(p \) times with respect to \(J_1, J_2, \ldots, J_k \), and \(J_l \), and then set \(J = 0 \). For example, for \(p = 1 \) the integrand in (22) becomes \(e^{-\frac{1}{2}x^T A x} \cdot x_j \), and since the integrand is now odd in \(x_j \), the integral vanishes. For \(p = 2 \) the integrand becomes \(e^{-\frac{1}{2}x^T A x} \cdot (x_i x_j) \), while on the right-hand side we bring down \(A_{ij}^{-1} \). Rearranging and eliminating \(\det[A] \) (by setting \(J = 0 \) in (22)), we obtain

\[
\langle x_i x_j \rangle = \frac{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} dx_1 dx_2 \cdots dx_N \, e^{-\frac{1}{2}x^T A x} \cdot x_i x_j}{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} dx_1 dx_2 \cdots dx_N \, e^{-\frac{1}{2}x^T A x}} = A_{ij}^{-1}
\]

just do it. Doing it is easier than explaining how to do it. Then do it for \(p = 3 \) and 4. You will see immediately how your result generalizes. When the set of indices \(i, j, \ldots, k, l \) contains an odd number of elements, \(\langle x_i x_j \cdots x_k x_l \rangle \) vanishes trivially. When the set of indices \(i, j, \ldots, k, l \) contains an even number of elements, we have

\[
\langle x_i x_j \cdots x_k x_l \rangle = \sum_{\text{Wick}} (A^{-1})_{ab} \cdots (A^{-1})_{cd}
\]

(24)

where we have defined

\[
\langle x_i x_j \cdots x_k x_l \rangle = \frac{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} dx_1 dx_2 \cdots dx_N \, e^{-\frac{1}{2}x^T A x} \cdot x_i x_j \cdots x_k x_l}{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} dx_1 dx_2 \cdots dx_N \, e^{-\frac{1}{2}x^T A x}}
\]

(25)

and where the set of indices \(\{a, b, \ldots, c, d\} \) represent a permutation of \(\{i, j, \ldots, k, l\} \). The sum in (24) is over all such permutations or Wick contractions.

For example,

\[
\langle x_i x_j x_k x_l \rangle = (A^{-1})_{ij} (A^{-1})_{kl} + (A^{-1})_{ij} (A^{-1})_{jk} + (A^{-1})_{ik} (A^{-1})_{jl}
\]

(Recall that \(A \), and thus \(A^{-1} \), is symmetric.) As in the simple case when \(x \) does not carry any index, we could connect the \(x \)'s in \(\langle x_i x_j x_k x_l \rangle \) in pairs (Wick contraction) and write a factor \((A^{-1})_{ab} \) if we connect \(x_a \) to \(x_b \).

Notice that since \(\langle x_i x_j \rangle = (A^{-1})_{ij} \), the right-hand side of (24) can also be written in terms of objects like \(\langle x_i x_j \rangle \). Thus, \(\langle x_i x_j x_k x_l \rangle = \langle x_i x_j \rangle \langle x_k x_l \rangle + \langle x_i x_k \rangle \langle x_j x_l \rangle + \langle x_i x_l \rangle \langle x_j x_k \rangle \).
Please work out $\langle x_i x_j x_k x_m x_n \rangle$; you will become an expert on Wick contractions. Of course, (24) reduces to (18) for $N = 1$.

Perhaps you are like me and do not like to memorize anything, but some of these formulas might be worth memorizing as they appear again and again in theoretical physics (and in this book).

Appendix 3

To do an exponential integral of the form $I = \int_{-\infty}^{+\infty} dq e^{-(1/\hbar)f(q)}$ we often have to resort to the steepest-descent approximation, which I will now review for your convenience. In the limit of \hbar small, the integral is dominated by the minimum of $f(q)$. Expanding $f(q) = f(a) + \frac{1}{2} f''(a)(q-a)^2 + O((q-a)^3)$ and applying (17) we obtain

$$I = e^{-(1/\hbar)f(a)} \left(\frac{2\pi \hbar}{f''(a)} \right)^{1/2} e^{-O(\hbar^{3/2})}$$

(27)

For $f(q)$ a function of many variables q_1, \ldots, q_N, and with a minimum at $q_j = a_j$, we generalize immediately to

$$I = e^{-(1/\hbar)f(a)} \left(\frac{(2\pi \hbar)^N}{\det f''(a)} \right)^{1/2} e^{-O(\hbar^{3/2})}$$

(28)

Here $f''(a)$ denotes the $N \times N$ matrix with entries $[f''(a)]_{ij} = \left(\frac{\partial^2 f}{\partial q_i \partial q_j} \right)_{q = a}$. In many situations, we do not even need the factor involving the determinant in (28). If you can derive (28) you are well on your way to becoming a quantum field theorist!

Exercises

1.2.1 Verify (5).

1.2.2 Derive (24).