
Exercises 437

10.38 Show that under the unitary Lorentz transformation (10.273), the
action density (10.258) is Lorentz covariant (10.259).

10.39 Show that under the unitary Lorentz transformations (10.257 & 10.273),
the Majorana mass terms (10.266 & 10.279) are Lorentz covariant.
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10.40 Show that the definitions of the gamma matrices (10.281) and of the
generators (10.283) imply that the gamma matrices transform as a 4-
vector under Lorentz transformations (10.284).

10.41 Show that (10.283) and (10.284) imply that the generators Jab satisfy
the commutation relations of the Lorentz group.

10.42 Show that the spinor ⇣ = �
2

⇠⇤ defined by (10.295) is right handed
(10.273) if ⇠ is left handed (10.257.

10.43 Use (10.303) to get (10.304 & 10.305).
10.44 Derive (10.306) from (10.285, 10.299, & 10.305).


