We compare

\[J_{H_2O} = -C_w L_p \Delta p \quad \text{with} \]

\[j = \sigma E c \quad \frac{\partial c}{\partial x} \]

and see that \(C_w L_p \) plays the role of \(1/3 \).

So we guess that

\[D \frac{\partial n}{\partial z} = \hbar T \]

becomes

\[P_w (C_w L_p)^{-1} = \hbar T \]

which makes sense in that we expect

\[P_w \Delta c = C_w L_p \Delta p \]

\[\frac{P_w}{C_w L_p} \frac{N}{V} = \Delta p \]

\[\frac{P_w N}{C_w L_p} = \Delta p V = N \Delta \kappa T \]
\(P_w (c_w L_p)^{-1} = k T \).

(a) \(L_p = \frac{P_w}{c_w k T} \)

find \(L_p \).