So \([H^+]\) is maintained at

\[
[H^+] = \frac{k_{HA}[HA]}{[A^-]} = \frac{k_{HA}[HA]}{k_{HA}[NaA][Na^+]}
\]

even if some HCl or KOH is added.

The new protons from the HCl combine with \(A^-\) ions from the \(NaA\), forming \(HA\). The new \(OH^-\) from the KOH absorb protons from \(HA\) which the \(OH^-\) once formed.

This works as long as the amounts of \(HA\) and \(NaA\) are similar and sufficient.

In blood, a buffer of carbonic acid \(H_2CO_3\) and bicarbonate \(HCO_3^-\) (with counterions \(Na^+, K^+, \) etc.) keeps \(7.35 < pH < 7.45\).
Incidentally, since

\[K_{HA} = \frac{[H^+][A^-]}{[HA]} \]

it follows that the pH (8.26) is

\[pH = -\log_{10} [H^+] = -\log_{10} \frac{K_{HA}[HA]}{[A^-]} \]

\[= pK_{HA} + \log_{10} \frac{[A^-]}{[HA]} \] \hspace{1cm} (HM) \]

since \(pK_{HA} = -\log_{10} K_{HA} \) (8.12), chemists call (HM) the **Henderson-Hasselbalch equation**.

It is proteins are chains of amino acids.

There are 20 different amino acids in local living organisms — although a few of them can be modified.
The side chains of glutamic acid and of aspartic acid contain carboxylic groups that remain ionized at all physiological pH's.

Aspartic acid (asp)
\[
\text{H}_3\text{N} - \text{CH} - \text{COO}^- \\
| \text{CH}_2 \\
| \text{COO}^- \\
\text{D}
\]

Glutamic acid (gln)
\[
\text{H}_3\text{N} - \text{CH} - \text{COO}^- \\
| \text{CH}_2 \\
| \text{COO}^- \\
\text{E}
\]

Acidic side chain
\[
\text{COOM} \rightleftharpoons \text{COO}^- + \text{H}^+
\]

The side chains of lysine and arginine are protonated at physiological pH's. They are basic.
Lysine (Lys)
\[\text{basic side chain} \]

\[-\text{NH}_3^+ \rightleftharpoons -\text{NH}_2 + \text{H}^+ \]

Histidine is protonated below about pH 6.

Histidine (His)

Arginine (Arg)

Histidine is protonated below about pH 6.
For each of these five amino acids

\[-12.5 \leq K_{eq} = \frac{[H^+] [R]}{[H^+R]} \leq -3.7 \]

arginine aspartic acid

\[P_\alpha = \frac{[H^+R]}{[H^+R] + [R]} \]

\(P_\alpha \) is the probability that the side chain is protonated. So

\[P_\alpha = \frac{1}{1 + \frac{[R]}{[H^+R]}} = \frac{1}{1 + \frac{k_{eq}}{[H^+]}} \]

Since \(pH = -\log [H^+] \), it follows that

\[10^{pH} = \frac{1}{[H^+]} \]

so in an environment of acidity \(pH \),

\[P_\alpha = \frac{1}{1 + 10^{pH} K_{eq}} \]

is the probability the side chain will be protonated.
Now by (8.12)

\[pK = -\log_{10} K_{eq} \]

\[10^{-pK} = K_{eq} \]

so

\[p\alpha = \frac{1}{1 + 10^{\frac{pH-pK}{pK}}} \]

\[= \frac{1}{1 + 10^{x}} \]

(\text{where } x = pH - pK) \text{ is the probability that a side chain of } pK \text{ will be protonated at } pH. \text{ Now the average change } \langle q \rangle \text{ on an acidic residue is }

\[\langle q \rangle = (-e) (1 - p\alpha) \]

\[(-\text{COO}^-) \]

and on a basic residue is

\[\langle q \rangle = -e \ p\alpha \]

\[(-\text{NH}_3^+) \text{ where } e > 0. \]
Note that if $pK = pH$, then $x = 0$ and

$$P = \frac{1}{1+1} = \frac{1}{2}$$

so the probability of protonation is 50%.

The local pH near each amino acid (aa) determines P_{aa} that a_{aa}.

One may **titrate** a solution of a given protein as in Fig. 8.1 on page 313 for the number of protons dissociated from each ribonuclease molecule as the pH rises:

![Graph showing dissociated protons vs pH with an isolectric point and zero net charge at pH 7.4]
Put an electric field \(E \) across a solution of a given protein solution at a given pH. There will be a force \(qE \) on the protein. By Stokes's law (4.14) the viscous friction coefficient is

\[
\gamma = 6\pi \eta R
\]

where \(\eta \) is the viscosity of the fluid and \(R \) the radius of the protein. The migration of the protein is electrophoresis. Its speed is more complex than \(v = qE/\eta \).

The probability \(P_\alpha \) of the protonation of residue \(\alpha \)

\[
P_\alpha = \frac{1}{1 + 10^{x_\alpha - \phi}}
\]

changes rapidly from 1 to 0 as \(x_\alpha = \phi \text{H} - \phi \text{K}_\alpha \) passes 0.

\[x_\alpha = \phi \text{H} - \phi \text{K}_\alpha \]
So as the pH rises, the charge on each protein will jump down in steps of e from some positive value ne to zero and then to negative values. At low pH, the protein will move with \mathcal{E}, then will stop when the pH is at the protein's isoelectric point, and then will move against \mathcal{E} as the pH increases further.

Linus Pauling (et al.) used this technique in 1949 to separate the β-globin chains of normal (wild-type) hemoglobin from those of sickle-cell hemoglobin. These 146 aa proteins
differ only by the mutation of glutamic acid to valine at position 6. G10 is negatively charged for pH > $pK_{G10} = 4.25$, so it carries a negative charge at all physiological pH’s. But valine is neutral and hydrophobic. The mutant proteins clump in fibers of 14 interwound helical strands that give the red blood cell a sickle shape. These deformed, stiff red blood cells get stuck in capillaries and are destroyed, causing anemia. At pH = 6.9, the wild-type and sickle-cell hemoglobins have opposite charges.

A different mutation, also at
position 6 of the \(\beta \) chain, causes hemoglobin-C disease. Here glutamic acid, which has charge \(-e\), is replaced by lysine, with charge \(+e\).

There also are three kinds of hemoglobin-\(M \) disease caused by histidine \(58 \rightarrow\) tyrosine or hist 63 \(\rightarrow \) tyrosine or valine, 67 \(\rightarrow \) glutamic acid. These mutations are on residues near a heme where \(O_2 \) binds; they cause cyanosis — incomplete oxygenation of hemoglobin.

Amphiphiles are molecules that have a hydrophobic part and a hydrophilic part. The detergent
sodium dodecyl sulfate (SDS)

\[\text{charged} \quad N_\text{a}^+ \quad \text{non-polar} \quad \text{hydrocarbon} \]

\[\text{pol} \quad \text{ar} \quad \text{charged} \quad \text{hydrocarbon} \]

\[\text{Na}_2 \text{SO}_4 \quad (\text{CH}_2)_11 \text{CH}_3 \]

(aka sodium lauryl sulfate) is an ionic surfactant used in toothpaste, shampoo, shaving cream, and in SDS-PAGE (SDS polyacrylamide gel electrophoresis).

Surfactants reduce surface tension by forming a monomolecular layer on the surface of the water, with the hydrocarbon tails in the air, the negatively charged sulfate groups in the water, and the \(\text{Na}^+ \) in a layer of counterions.

\[\text{water} \quad \text{Na}_2^+ \quad \text{Na}_3^+ \quad \text{Na}_4^+ \]
Phosphatidylcholine, a phospholipid,

\[
\begin{align*}
\text{monopolar} & \quad \text{electric dipole} \\
R \quad \overset{\text{O}}{\underset{\text{CH}_2}{\text{H}}} \quad \overset{\text{O}}{\underset{\text{R'}}{\text{C}}} \\
\end{align*}
\]

is another example of an amphiphile. It occurs in the phospholipid bilayer of a cell's membrane. Lecithin is a phospholipid found in yolks of eggs, which with olive oil makes an emulsion, known as mayonnaise.

\[
\begin{align*}
\text{oil} & \quad \text{water} \\
\text{water, acetic acid} & \quad \text{water, vinegar} \\
\text{mustard, KCl} & \quad \text{oil}
\end{align*}
\]