α. AND β LINKS
The hydroxyl group on the carbon that carries the aldehyde or ketone can rapidly change from one position to the other. These two positions are called α and β.

As soon as one sugar is linked to another, the α or β form is frozen.

SUGAR DERIVATIVES
The hydroxyl groups of a simple monosaccharide can be replaced by other groups. For example,

- **N-acetylg glucosamine**
- **Glucuronic acid**

DISACCHARIDES
The carbon that carries the aldehyde or the ketone can react with any hydroxyl group on a second sugar molecule to form a disaccharide. The linkage is called a glycosidic bond.

Three common disaccharides are:
- Maltose (glucose + glucose)
- Lactose (galactose + glucose)
- Sucrose (glucose + fructose)

The reaction forming sucrose is shown here.

OLIGOSACCHARIDES AND POLYSACCHARIDES
Large linear and branched molecules can be made from simple repeating sugar subunits. Short chains are called oligosaccharides, while long chains are called polysaccharides. Glycogen, for example, is a polysaccharide made entirely of glucose units joined together.

COMPLEX OLIGOSACCHARIDES
In many cases a sugar sequence is nonrepetitive. Many different molecules are possible. Such complex oligosaccharides are usually linked to proteins or to lipids, as is this oligosaccharide, which is part of a cell-surface molecule that defines a particular blood group.