Chapter 7

A classical, given, lagrangian density with a symmetry when canonically quantized leads to a quantum theory that exhibits the symmetry if this is possible.

Canonical Variables

The free fields in chapter 5 are systems of \(q^m(x, t) \) and canonical conjugates \(p_m(x, t) \) that satisfy the canonical (anti) commutation relations:

\[
\begin{align*}
&[q^m(x, t), p_m(y, t)] = i \delta^3(x - y) \\delta^{(4)}_{m, n} \\
&[q^m(x, t), q^n(y, t)] = 0 \\
&[p_m(x, t), p_n(y, t)] = 0
\end{align*}
\]

Note the pairs are at equal times, \(t_x = t_y = t \).

For example, the real scalar field \(\phi(x) \) in the \(\alpha^2 = \alpha \), spin-\(2 \) case:

\[
\phi(x) = \phi^\uparrow(x) + \phi^\downarrow(x)
\]

satisfies (5.2.6)

\[
\begin{align*}
&[\phi^\uparrow(x), \phi^\uparrow(y)] = \Delta^\uparrow(x - y) \\
&[\phi(x), \phi(y)] = [\phi^\uparrow(x), \phi^\uparrow(y)] + [\phi^\downarrow(x), \phi^\downarrow(y)] -
\end{align*}
\]

\[
\begin{align*}
&= \Delta^\uparrow(x - y) - \Delta^\downarrow(y - x) = \Delta(x - y)
\end{align*}
\]

by the definition (5.2.13) of \(\Delta \),

\[
\Delta(x) = \Delta^\uparrow(x) - \Delta^\downarrow(x) = \int \frac{d^4p}{(2\pi)^3} \left(e^{ipx} - e^{-ipx} \right).
\]
Here \(p^0 = \sqrt{p_o^2 + \mathbf{p}^2} \).

Now \(\Delta(x^0, 0) = 0 \) and

\[
\dot{\Delta}(x^0, 0) = \left. \frac{\partial}{\partial t} \Delta(x^0, t) \right|_{t=0} = \int \frac{d^3 p}{(2\pi)^3} \left(\frac{i p^0}{\sqrt{p_o^2 + \mathbf{p}^2}} \right) e^{-i p^0 x^0 - \mathbf{p} \cdot \mathbf{x}} \left(\frac{-1}{p^0} \right) \left(\frac{1}{\sqrt{p_o^2 + \mathbf{p}^2}} \right) \frac{d^3 p}{(2\pi)^3} = -i \int \frac{d^3 p}{(2\pi)^3} e^{-i p^0 x^0} = -i \delta^{(3)}(\mathbf{x}).
\]

So \(\Delta(x^0, -\mathbf{x}, 0) = 0 \) and thus

\[
[\phi(x^0, t), \phi(y^0, t)] = \Delta(x^0, -\mathbf{y}, 0) = 0.
\]

And

\[
[\phi(x^0, t), \partial_0 \phi(y^0, t)] = \partial_0 \Delta(x^0 - \mathbf{y}, 0)
\]

\[
= -\frac{\partial}{\partial x^0} \Delta(x^0, y^0) \bigg|_{x^0 = y^0} = i \delta^{(3)}(x^0 - \mathbf{y}).
\]

So \([\phi(x^0, t), \phi(y^0, t)] = i \delta^{(3)}(x^0 - \mathbf{y}). \)

Finally,

\[
[\dot{\phi}(x^0, t), \phi(y^0, x)] = \left. \frac{\partial^2}{\partial x^0 \partial y^0} \Delta(x^0 - \mathbf{y}, 0) \bigg|_{x^0 = y^0} \right. = i p^0 \left(\frac{i p^0}{\sqrt{p_o^2 + \mathbf{p}^2}} \right) e^{-i p^0 x^0 - \mathbf{p} \cdot \mathbf{x}} - i p^0 \left(\frac{-1}{p^0} \right) \left(\frac{1}{\sqrt{p_o^2 + \mathbf{p}^2}} \right) \frac{d^3 p}{(2\pi)^3} = 0.
\]

So \([\dot{\phi}(x^0, t), \phi(y^0, t)] = 0. \)
So the canonical variables are
\[q(x, t) = \phi(x, t) \quad \text{and} \quad p(x, t) = \dot{\phi}(x, t), \]

The complex spinor field is
\[\phi(x, t) = \sqrt{i} \int \frac{d^3 \xi}{(2\pi)^3} e^{i \frac{x \cdot \xi}{\hbar}} \phi(\xi, t) \]

and
\[i \frac{\partial \phi}{\partial t} = \frac{\partial}{\partial x} \cdot \frac{\dot{\phi}}{\hbar} + \frac{\partial}{\partial \xi} \cdot \frac{\phi}{\hbar} \]

becomes
\[\Delta(x, y) = -i \delta^3(x - y) \]

Also,
\[\left[\phi(x, t), \phi^+(y, \tau) \right] = 0. \]

So we may take \(q(x, t) = \phi(x, t) \) and \(p(x, t) = \dot{\phi}(x, t) \).

Or we may use real variables
\[\phi = \frac{1}{\sqrt{2}} (\phi_i + i \phi_e), \quad \phi_i = \frac{1}{\sqrt{2}} (\phi_i + \phi^+_e), \quad \phi_e = \frac{1}{i \sqrt{2}} (\phi_i - \phi^+_e) \]

Then
\[\left[\phi_i(x, \xi), \phi_e(y, \eta) \right] = 0 \]

\[\left[\phi_i(x, \xi), \phi_i^+(y, \eta) \right] = \frac{1}{2i} \left[\phi_i(x, \xi) + \phi_i^+(x, \xi), \phi_i(y, \eta) + \phi_i^+(y, \eta) \right] \]

\[= i \delta(\vec{x} - \vec{y}) \quad \text{while} \]

\[\left[\phi_e(x, \xi), \phi_e(y, \eta) \right] = \frac{\sqrt{2}}{2i} \left[\phi_e(x, \xi) + \phi_e^+(x, \xi), \phi_e(y, \eta) + \phi_e^+(y, \eta) \right] \]

\[= \frac{1}{2i} \left[i \delta(x - y) - 1 \delta(x - y) \right] = 0 \]

\[\left[\phi_i(x, \xi), \phi_i^+(y, \eta) \right] = \frac{1}{2i} \left[\phi_i(x, \xi) - \phi_i^+(x, \xi), \phi_i(y, \eta) - \phi_i^+(y, \eta) \right] = i \delta(\vec{x} - \vec{y}). \]
We may make a complex field \(\phi \) out of two real fields\(\phi = \frac{1}{\sqrt{2}} (\phi_1 + i \phi_2) \) with \(\phi^r = \phi_1 \), \(\phi^i = \phi_2 \).

Then
\[
[\phi(x,t), \phi(y,t)] = \frac{i}{2} \left[\phi(x,t) : \phi^*(y,t) + \phi^*(x,t) : \phi(y,t) \right] = 0
\]
and
\[
[\phi(x,t), \phi^+(y,t)] = \frac{i}{2} \left[\phi(x,t) : i \phi^+(y,t) - i \phi^*(y,t) \phi(x,t) \right] = 0
\]
while
\[
[\phi(x,t), \phi^+(y,t)] = \frac{i}{2} \left[\phi(x,t) : i \phi^+(y,t) - i \phi^*(y,t) : \phi(x,t) \right] = \frac{3}{2} i \delta(x-y) + \frac{i}{2} \delta(x-y) = i \delta(x-y).
\]

But
\[
[\phi(x,t), \phi^+(y,t)] = \frac{i}{2} \left[\phi^r, \phi^r \right] - \frac{i}{2} \left[\phi^i, \phi^i \right] = 0.
\]
So the real canonical variables are
\[\mathbf{q}^1(x, t) = \phi^1(x, t) \quad \text{and} \quad \mathbf{p}^1(x, t) = \phi^0(x, t) \]
which obey
\[[\mathbf{q}^1(x, t), \mathbf{q}^1(y, t)] = 0 \]
\[[\mathbf{p}^1(x, t), \mathbf{p}^1(y, t)] = 0 \]
and
\[[\mathbf{q}^1(x, t), \mathbf{p}^1(y, t)] = i \delta(x - y). \]

The real vector field of spin one, \(\mathbf{v}^\mu(x, t) \),
\[\mathbf{v}^\mu(x) = \mathbf{v}^{\mu(+)}(x) + \mathbf{v}^{\mu(-)}(x) \]
satisfies by (5.2.1.3)
\[[\mathbf{v}^{\mu(x, t)}, \mathbf{v}^{\nu(y, t)}] = [\mathbf{V}^{\mu(+)}(x) + \mathbf{V}^{\mu(-)}(x), \mathbf{V}^{\nu(+)}(y) + \mathbf{V}^{\nu(-)}(y)] - \]
\[= [\mathbf{V}^{\mu(+)}(x), \mathbf{V}^{\nu(+)}(y)] + [\mathbf{V}^{\mu(-)}(x), \mathbf{V}^{\nu(-)}(y)] \]
\[= (\gamma^{\mu\nu} - \frac{\gamma^{\mu\nu}}{m^2}) \Delta(x - y) = \gamma^{\mu\nu} \Delta(x - y) \]
But by (5.2.1.3)
\[\Delta(x) - \Delta(-x) = \Delta(x) \], so we have
\[[\mathbf{v}^{\mu(x, t)}, \mathbf{v}^{\nu(y, t)}] = (\gamma^{\mu\nu} - \frac{\gamma^{\mu\nu}}{m^2}) \Delta(x - y). \]
So
\[[\mathbf{v}^{1(x, t)}, \mathbf{v}^{1(y, t)}] = (\delta^{1\nu} - \frac{\delta^{1\nu}}{m^2}) \Delta(x - y) \]
\[= (\delta^{1\nu} - \frac{\delta^{1\nu}}{m^2}) \frac{\partial^1}{\partial x^\nu} \cdot 0 = 0 \]
Let
\[\mathbf{p}^1(x, t) = \frac{\partial \mathbf{v}^1(x, t)}{\partial t} + \frac{\partial \mathbf{v}^0(x, t)}{\partial x^1} = \partial_0 \mathbf{v}^1 + \partial_1 \mathbf{v}^0 \]
\[= \partial_1 \mathbf{v}^0 - \partial_0 \mathbf{v}^1. \]
So \(\Phi'(x,t) = V'(x,t) \), then

\[
\Gamma_{\Phi'(x,t), \Phi'(y,t)} = 0 \quad \text{and} \quad \Gamma_{\Phi'(x,t), \Phi'(y,t)} = \left[\frac{\partial V'(x,t)}{\partial y} + \partial_j V^0(y,t) \right] -
\]

\[
\frac{2}{\partial y_0} \left(\delta^{(3)}(x-y) \right) = \frac{2}{\partial y} \left(\frac{\partial^2}{\partial y^2} \right) \Delta(x-y)
\]

\[
= \frac{2}{\partial y_0} \left(\delta^{(3)}(x-y) \right) + \frac{\partial^2}{\partial y^2} \Delta(x-y)
\]

\[
= \delta^{(3)}(x-y) - \partial_0 \partial^j \Delta(x-y) + \partial^j \partial^0 \Delta(x-y)
\]

And

\[
\Gamma_{\Phi'(x,t), \Phi'(y,t)} = \left[\partial_0 V'(x,t) + \partial_j V^0(x,t), \partial_0 V_j(y,t) + \partial_j V^0(y,t) \right]
\]

\[
= -\frac{\partial^2}{\partial x^2} \left(\delta^{(3)}(x-y) \right) - \partial_i \partial_0 \left(\frac{\partial^2}{\partial y^2} \right) \Delta(x-y)
\]

\[
- \partial_i \partial_j \left(\frac{\partial^2}{\partial y^2} \right) \Delta(x-y) - \partial_0 \partial^j \left(\frac{\partial^2}{\partial y^2} \right) \Delta(x-y)
\]

\[
= -\delta^{(3)} \partial^2 \Delta + \frac{\partial^2}{\partial x^2} \Delta + \frac{\partial^2}{\partial y^2} \Delta - \frac{\partial^2}{\partial y^2} \Delta - \partial^2 \partial^j \Delta - \partial^2 \partial^j \Delta
\]

\[
= -\delta^{(3)} \partial^2 \Delta(x-y) + \partial_i \partial_j \Delta(x-y) = 0 - 0 = 0 \quad \text{at} \quad x^0 = y^0 = t.
\[\eta_{(5.3.38)} \quad \partial_m v^m = 0 \implies v^0 = - \nabla \cdot v \]

So \[\nabla \cdot p = \nabla \cdot v + \Delta v^0 = - \partial_0 v^0 + \Delta v^0 \]

But by \(\eta_{(5.3.36)} \) \[\Delta v^0 - \partial_0^2 v^0 = \nabla v^0 = m^2 v^0 \]

So \[\frac{\nabla \cdot p}{m^2} = v^0 \] \[
(\Delta - m^2) V^0(x) = 0
\]

This means that \(v^0 \) is a dependent variable.

The complex spin-one vector field \(V^m(x) \) obeys

\(\eta_{(5.3.35)} \)

\[[V^m(x, \xi), \bar{V}^n(x', \xi')] = (\eta^{mn} - 2 \eta^{m0} \eta^{n0}) \frac{\Delta (x - x')}{m^2} \]

So \[\psi'(x, \xi) = V^m(x, \xi) \] and

\[p_i(x, \xi) = \psi_i(x, \xi) + \frac{\partial v_0^i(x, \xi)}{\partial x^i} \]

On the real fields \(\psi_1^m = \frac{1}{\sqrt{2}} (V^m + V^m) \)

and \(\psi_2^m = \frac{1}{\sqrt{2}} (V^m - V^m) \)

\[V^m = \frac{1}{\sqrt{2}} \left(V_1^m + i V_2^m \right) \]
\[(5.5.39) \Rightarrow \left[\psi^+_2(x, t), \psi^-_2(y, t) \right]^+_t = \left\{ \gamma^0 \delta^m + m \beta \right\} \delta^3_{m \bar{m}} \Delta (x - y), \]

and \[\left[\psi^+_2(x, t), \psi^-_2(y, t) \right]^+_t = 0 \quad (t \text{ complex}) \]

Since \[\left[\psi^+_2, \psi^-_2 \right]^+_t = 0 \] at equal times, we cannot have \[\psi^+_2 = \psi^-_2 \] and \[\psi^+_2 = \psi^-_2 \] instead

\[
\psi^+_m(x) = \psi^-_m(x) \quad \text{and} \quad p^m_m(x) = i \psi^+_m(x),
\]

Then

\[
\left[\psi^+_m(x, t), \psi^-_{\bar{m}}(y, t) \right]^+_t = 0 \quad \left[p^m_m, p^\bar{m}_{\bar{m}} \right]^+_t = 0
\]

and

\[
\left[\psi^+_m(x, t), p^\bar{m}_{\bar{m}}(y, t) \right]^+_t = i \left\{ \gamma^0 \delta^m + m \beta \right\} \delta^3_{m \bar{m}} \Delta (x - y)
\]

\[
= -i \left(\gamma^0 \delta^m + m \beta \right) \delta^3_{m \bar{m}} \Delta (x - y)
\]

\[
\beta = i \gamma^0 \\
\gamma^m = -1
\]

\[
= (\gamma^0) \delta^m \delta^3_{m \bar{m}} \Delta (x - y)
\]

\[
= -2 \Delta (x - y) \delta^3 \delta^m \delta^3_{m \bar{m}} = i \delta^3 (x - y) \delta^3_{m \bar{m}}.
\]
QM functional derivative of a bosonic functional F

$$
\frac{\delta F[q(x), p(x)]}{\delta q^m(x,t)} = \frac{i}{\hbar} \left[\frac{\partial}{\partial x^m} F[q(x), p(x)], \frac{\partial}{\partial p(x)} \right]
$$

and

$$
\frac{\delta F[q(x), p(x)]}{\delta p(x,t)} = \frac{i}{\hbar} \left[F[q(x), p(x)], \frac{\partial}{\partial q^m(x,t)} \right]
$$

For example, $F = \int d^3x \, q^2(x,t) \, p(x,t)$, then

$$
\frac{\delta F}{\delta q^m(x,t)} = 2 \left[p_m(x,t), \int d^3y \, \delta(x-y) \right] = 2 \int d^3y \left[p_m(x,t), \frac{\partial}{\partial q^m(y,t)} \right] p(y,t)
$$

$$
\left[p, q^2 \right] = (pq - qp) = \frac{\partial}{\partial q} \left(\frac{1}{2} q^2 \right) = -i\hbar \frac{\partial}{\partial q}
$$

So

$$
\frac{\delta F}{\delta p(x,t)} = 2 \int d^3y \left[p(x,t), \frac{\partial}{\partial q^m(y,t)} \right] = 2 \int d^3y \left[p(x,t), \frac{\partial}{\partial q^m(x,y)} \right].
$$

But the momenta L & R get interchanged.

For instance, $F = \int d^3y \, \psi^R(x,t) \psi^L(x,t)$

$$
\frac{\delta F}{\delta \psi^m(x,t)} = \frac{i}{\hbar} \left[\psi^m(x,t), \frac{\partial}{\partial \psi^m(x,t)} \right] = \frac{i}{\hbar} \left[\int d^3y \, \psi^L(y,t) \psi^R(x,t), \psi^m(x,t) \right]
$$

$$
= \frac{i}{\hbar} \int d^3y \left[\psi^L(y,t) \psi^R(x,t) \psi^m(x,t) - \psi^m(x,t) \psi^L(y,t) \psi^R(x,t) \right]
$$
\[\frac{\delta F}{\delta \psi_m(x,t)} = -i \int dy \, \psi(y,t)^+ [\gamma^\mu, \psi_m(x,t)]^+ \]

\[= +i \int dy \, \delta m \, \delta(x-y) \, \psi(y,t) \]

\[= +i \, \psi_m(x,t), \quad \because \frac{\partial F}{\partial \psi^+} \text{ from the left} \]

\[\frac{\delta F}{\delta \psi} = \frac{1}{2} [\psi(x), \psi(x)^+] = \int dy \, [\psi(y), \psi(y)^+], \quad \psi_0 = \psi(x), \quad \because \frac{\partial F}{\partial \psi^+} \text{ from right} \]

\[\delta F [\psi(x), \psi(x)^+] = \int d^3x \, \sum_m \delta q^m(x,t) \frac{\delta F [\psi(x), \psi(x)^+]}{\delta q^m(x,t)} \]

\[+ \frac{\delta F [\psi(x), \psi(x)^+] \delta p_m(x,t)}{\delta p_m(x,t)} \]

So to get the same result \(F = q^m \, p_m \) for both

\[\text{but } F = p^m \, q_m \text{ for fermions (with } L \in \mathbb{R} \text{)} \]

For fermions the choices are:

\[F = \psi^+_m \psi_m \quad \text{or} \quad F = \psi_m \psi^+_m \]

\[\frac{\delta F}{\delta \psi_m} = -i \gamma^\mu \frac{\partial F}{\partial u^+} \quad \frac{\delta F}{\delta \psi_m} = \frac{\partial F}{\partial u^+} \]

\[\frac{\delta F}{\delta q^m} = \psi^+_m \frac{\partial F}{\partial u^m} \quad \frac{\delta F}{\delta q^m} = \frac{\partial F}{\partial u^m} \]

Both seem awkward.
\[H_0 \text{ is the generator of time translations:} \]
\[\begin{align*}
q^a(x, t) &= e^{\text{i} \omega^a t} q^a(x, 0) e^{-\text{i} \omega^a t} \\
p^a(x, t) &= e^{\text{i} \omega^a t} p^a(x, 0) e^{-\text{i} \omega^a t}
\end{align*} \]

So the free-particle operators obey
\[\begin{align*}
\frac{\partial}{\partial t} q^a(x, t) &= \frac{\partial}{\partial \omega^a} \tilde{q}^a(x, t) = \frac{
abla H_0}{\nabla p^a(x, t)} \\
p^a(x, t) &= -\text{i} \left[\tilde{p}^a(x, t), H_0 \right] = -\frac{\nabla H_0}{\nabla \tilde{q}^a(x, t)}
\end{align*} \]

as in Hamilton's mechanics.

The free-particle Hamiltonian is
\[H_0 = \sum_{\sigma} \int d^3 \chi \, a^\dagger(\mathbf{r}, \sigma, n) a(\mathbf{r}, \sigma, n) \sqrt{\dot{\chi}^2 + m_n^2} \]

Up to a constant, in the real scalar field
\[H_0 = \int d^3x \left(\frac{1}{2} p^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 \right) \]
\[= \frac{1}{4} \int d^3x \int d^3 p \int d^3 p' \left\{ \begin{bmatrix}
\text{i} \phi x & -\text{i} \phi x \\
-\text{i} \phi x & \text{i} \phi x
\end{bmatrix}
\begin{bmatrix}
\text{i} p^0 \phi(p) e^{\text{i} p^0 \phi} \\
\text{i} p^0 \phi(p') e^{\text{i} p^0 \phi(p')}
\end{bmatrix} \right\}
\]
\[+ \left[i \hat{p} a(p) e^{\text{i} \hat{p} \phi} + i \hat{p} a^\dagger(p') e^{\text{i} \hat{p} \phi(p')} \right] \left[i \hat{p} a(p') e^{\text{i} \hat{p} \phi} - i \hat{p} a(p') e^{\text{i} \hat{p} \phi(p')} \right] \]
\[+ m^2 \left[\frac{a(p) e^{\text{i} \hat{p} \phi} + a^\dagger(p') e^{\text{i} \hat{p} \phi(p')}}{2} \right] \left[a(p) e^{\text{i} \hat{p} \phi} + a^\dagger(p') e^{\text{i} \hat{p} \phi(p')} \right] \]
\[H_0 = \frac{1}{2} \int \frac{d^3p}{2p^0} \left\{ a(p) a(-p) \left[-p^2 + \vec{p}^2 + m^2 \right]
ight. \\
+ a(p) a^d(p) \left[p^2 \vec{p}^2 + m^2 \right] \\
+ a^d(p) a(p) \left[p^2 \vec{p}^2 + m^2 \right] \\
+ a^d(p) a(-p) \left[-p^2 + \vec{p}^2 + m^2 \right] \left\} \right. \\
= \frac{1}{2} \int \frac{d^3p}{2p^0} \left(-p^2 \left(a(p) a^d(p) + a^d(p) a(p) \right) \right) \\
= \frac{1}{2} \int \frac{d^3p}{p^0} \left(a^d(p) a(p) + \frac{1}{4} \delta^3(0) \right) \\
= \sum_m \frac{p^0}{m} \left[a^d(p_m) a(p_m) + \frac{1}{4} \frac{(2\pi)^3 a(p_m) a(p)}{V} \right] \\
= \text{zero point energies.} \\

From this \(H_0 \), we derive \(L_0 \) \\
\[L_0 [\phi(x), \dot{\phi}(x)] = \sum_m \int d^3x \ p(x,x) \hat{\phi}^*(x) \hat{\phi}(x,x) - H_0 \]

For the real scalar field, \(\phi = \dot{\phi} = \nabla \phi \)

\[L_0 = \int d^3x \ p \dot{\phi} - \frac{1}{2} \nabla^2 \phi - \frac{1}{2} (\nabla \phi)^2 - \frac{1}{2} m^2 \phi^2 \\
= \int d^3x \ \nabla^2 \phi - \frac{1}{2} \nabla \phi \nabla \phi - \frac{1}{2} m^2 \phi^2. \]

This must be \(L_0 \) because it gives the right \(H_0 \).
The 'Heisenberg picture' canonical variables are

\[Q_n(x,t) = e^{iHt} q_n(x,0) e^{-iHt} \]
\[\hat{p}_m(x,t) = e^{iHt} \hat{p}_m(x,0) e^{-iHt} \]

where \(H \) is the full Hamiltonian.

\[\hat{M}[Q, \hat{P}] = e^{iHt} \hat{M}[q(x,0), \hat{p}(0)] e^{-iHt} = \hat{M}[\hat{q}, \hat{p}] \]

\[e^{iHt} \cdots e^{-iHt} \]

is a similarity transformation so

\[\hat{E} Q_n(x,t), \hat{P}_m(x,t) \hat{J} = e^{iHt} (q_n(x,0), \hat{p}, (0)) \hat{J} e^{-iHt} \]

\[= i \delta^3(x-y) \delta^m_n. \]

\[\{ \hat{Q}^m(x,t), \hat{Q}^n(x',t) \} \hat{J} = 0 = \{ \hat{P}^m(x,t), \hat{P}^n(x',t) \} \hat{J} \]

But they obey

\[\dot{Q}_n(x,t) = i [\hat{E} Q, \hat{Q}^m(x,t)] = \frac{\delta^m}{\delta P^m(x,t)} \tag{7.133} \]

\[\dot{P}_m(x,t) = -i [\hat{P}_m(x,t), \hat{E}] = -\frac{\delta \hat{E}}{\delta Q^m(x,t)} \tag{7.134} \]
Ex. \(H = \frac{1}{2} \frac{d^2 x}{dt^2} + \frac{1}{2} (\mathbf{P}^2 + i \frac{1}{2} \mathbf{Q}^2) + \frac{1}{2} m^2 \mathbf{Q}^2 + \mathcal{H}(Q) \)

Here \(\mathbf{P} = \dot{Q} \) as before for the free case.

but in general \(\mathbf{P} \) is not always \(\dot{Q} \). One must use H's equations of motion (7.1.33-34) to infer \(\mathbf{P}(\mathbf{Q}, \dot{Q}) \).

The Lagrangian Formalism

Pick \(L \) with right symmetries and then find \(H \). In fact given \(H \), we could find \(L \).

But it is \(L(x) \) that is a scalar.

In general the lagrangian

\[L = L[\Phi(x,t), \Phi(x,t)] \]

is a functional of the general fields \(\Phi^I(x,t), \Phi^\phi(x,t) \).

\[\Pi_\phi(x,t) = \frac{\delta L[\Phi(x,t), \Phi(x,t)]}{\delta \Phi^\phi(x,t)} \quad (7.2.1) \]

where we do what we want to make this sensible.

which may or may not be (7.1.17-18).

The equations of motion are

\[\Pi_\phi(x,t) = \frac{\delta L[\Phi(x,t), \Phi(x,t)]}{\delta \Phi^\phi(x,t)} \quad (7.2.2) \]
The action is

$$I[\psi] = \int_{-\infty}^{\infty} \text{d}^4x \left[\frac{\mathcal{L}}{8} \frac{\delta L}{\delta \psi(x)} + \frac{\delta L}{\delta \psi(x)} \frac{\delta}{\delta \psi(x)} \right] \psi^a(x) \psi^a(x) \, dt \, dt \, \text{d}^4x$$

Let $\psi^a = 0$ as $t \to \pm \infty$. Then by parts

$$S I[\psi] = \int d^4x \left[\frac{\delta L}{\delta \psi(x)} - \frac{\delta L}{\delta \psi(x)} \frac{\delta}{\delta \psi(x)} \right] \psi^a(x) \, \text{d}^4x.$$

So $S I[\psi] = 0$ to lowest order if $\delta \psi^a = 0$ at $t = \pm \infty$ and if

$$\frac{\delta L}{\delta \psi(x)} = \frac{\delta L}{\delta \psi(x)} \frac{\delta}{\delta \psi(x)}$$

which is (7.2.2).

$I[\psi]$ is a scalar usually (a constant).

We usually take $L[\psi(1, \psi(1)]) = \int d^4x \, L(\psi(x), \frac{\partial \psi(x)}{\partial x}, \frac{\partial^2 \psi(x)}{\partial x^2})$

so that the action is

$$I[\psi] = \int d^4x \, L(\psi(x), \frac{\partial \psi(x)}{\partial x}, \frac{\partial^2 \psi(x)}{\partial x^2}),$$

which is the case for all commercial field theories.

Now we vary $\psi^a(x)$ by $\delta \psi^a(x)$ which vanishes on the boundary of d^4x;

$$S L = \int d^4x \left[\frac{\partial}{\partial \psi^a} \psi^a + \frac{\partial}{\partial \psi^a} \nabla \psi^a + \frac{\partial^2}{\partial \psi^a} \psi^a \right]$$

$$= \int d^4x \left[\frac{\partial}{\partial \psi^a} \big(- \frac{\partial \psi^a}{\partial x} \nabla \psi^a \big) \frac{\delta L}{\delta \psi^a} + \frac{\partial}{\partial \psi^a} \right].$$
\[\frac{\delta L}{\delta \Phi} = \frac{\partial L}{\partial \Phi} - \nabla \cdot \frac{\partial L}{\partial \nabla \Phi} \]

\[\frac{\delta L}{\delta \dot{\Phi}} = \frac{\partial L}{\partial \dot{\Phi}} \]

So (1.2.2) now:

\[\frac{d}{dt} \frac{\delta L}{\delta \Phi} = \frac{\partial L}{\partial \Phi} - \frac{\partial L}{\partial \dot{\Phi}} - \nabla \cdot \frac{\partial L}{\partial \nabla \Phi} \]

or

\[\frac{\partial}{\partial \Phi} \frac{\partial L}{\partial \Phi} = \frac{\partial L}{\partial \Phi} \]

which are the Euler-Lagrange equations. If \(L \)

is a scalar, then these E-L eqns. are known to be invariant.

We also need \(I = I^* \). Think of the fields as real \((\Phi = \Phi_1 + \Phi_2 \text{ if } \Phi^* \neq \Phi)\). Say here

are \(N \) real fields. If \(I \) were complex, then

there would be \(2N \) real equations of motion, the

E-L eqns. But we want only \(N \) such E-L equations.
The Legendre transformation is used to find H from $L = \mathcal{L}$.

$$H = \sum_{\alpha} \int d^3 x \, \pi^\alpha (x, t) \Phi^\alpha (x, t) - \mathcal{L} \left[\Phi^\alpha (x, t), \pi^\alpha (x, t) \right].$$

Now (7.2.1),

$$\pi^\alpha (x, t) = \frac{\delta \mathcal{L} \left[\Phi^\alpha (x, t), \pi^\alpha (x, t) \right]}{\delta \Phi^\alpha (x, t) \left| \pi^\alpha (x, t) \right|}.$$

does not always allow $\Phi^\alpha (x, t)$ to be expressed uniquely in terms of Φ^α and π^α. But H is constructed so that

$$\frac{\delta H}{\delta \Phi^\alpha} \bigg|_\pi = 0.$$

H is taken to be a functional of $\pi^\alpha (x, t)$ and $\Phi^\alpha (x, t)$.

$$\frac{\delta H}{\delta \pi^\alpha (x, t)} \bigg|_\pi = \int d^3 y \sum_{\alpha} \pi^\alpha (y, t) \frac{\delta \mathcal{L} \left[\Phi^\alpha (y, t), \pi^\alpha (y, t) \right]}{\delta \Phi^\alpha (y, t) \left| \pi^\alpha (y, t) \right|} - \frac{\delta L}{\delta \pi^\alpha (x, t) \left| \pi^\alpha (x, t) \right|} \pi^\alpha (x, t) \bigg|\Phi^\alpha (x, t) \bigg|_{\pi^\alpha (x, t), \Phi^\alpha (x, t)}$$

and

$$\frac{\delta H}{\delta \Phi^\alpha} \bigg|_\pi = \Phi^\alpha (x, t) + \int d^3 y \sum_{\alpha} \pi^\alpha (y, t) \frac{\delta \mathcal{L} \left[\Phi^\alpha (y, t), \pi^\alpha (y, t) \right]}{\delta \Phi^\alpha (y, t) \left| \pi^\alpha (y, t) \right|} - \frac{\delta L}{\delta \Phi^\alpha (x, t) \left| \pi^\alpha (x, t) \right|} \Phi^\alpha (x, t) \bigg|_{\pi^\alpha (x, t), \Phi^\alpha (x, t)}$$

$$- \int d^3 y \sum_{\alpha} \frac{\delta L}{\delta \pi^\alpha (y, t) \left| \pi^\alpha (y, t) \right|} \pi^\alpha (y, t) \bigg|_{\pi^\alpha (y, t), \Phi^\alpha (y, t)}.$$
\[\frac{\delta H}{\delta \psi^\ell(x,t)} \bigg|_\pi = - \frac{\delta L}{\delta \psi^\ell(x,t)} \bigg|_\pi \]

and

\[\frac{\delta H}{\delta \pi^\ell(x,t)} \bigg|_\psi = \psi^\ell(x,t) \]

So (7.2.2),

\[\pi^\ell(x,t) = \frac{\delta L}{\delta \psi^\ell(x,t)} \]

now simplifies Hamilton's equations

\[\frac{\delta H}{\delta \psi^\ell(x,t)} \bigg|_\pi = - \pi^\ell(x,t) \quad \text{and} \quad \frac{\delta H}{\delta \pi^\ell(x,t)} \bigg|_\psi = \psi^\ell(x,t). \]

(7.2.12) \quad (7.2.13)

In the simple cases, one may identify

\[\psi^\ell, \pi^\ell \text{ with } q^\ell, p^\ell, \text{ and one may impose} \]

the canonical commutation relations (7.1.30-32)

\[[\psi^\ell(x,t), \pi^\ell(x',t')] = i \delta^\ell_{\ell'} \delta(x-t) \]

so that

(7.2.12-13) become like (7.1.33-34)

\[-\pi^\ell(x,t) = \frac{\delta H}{\delta \psi^\ell(x,t)} = i \left[\pi^\ell(x,t), H \right] \]

and

\[\psi^\ell(x,t) = \frac{\delta H}{\delta \pi^\ell(x,t)} = i \left[H, \psi^\ell(x,t) \right]. \]
In example, if $Z = -\frac{i}{2} \partial \phi \partial^2 \phi - \frac{m^2}{2} \phi^2 - \mathcal{H}(\phi)$,

then the E-L equations

$$\frac{\partial}{\partial (\partial \phi)} \frac{\partial Z}{\partial \phi}$$

are

$$(\Box - m^2)\phi = \mathcal{H}'(\phi).$$

$$\Pi = \frac{\partial Z}{\partial \phi} = \phi$$ (cf. 7.1.36)

$$H = \int d^3x \left(\Pi \phi - Z \right)$$

$$= \int d^3x \left(\frac{1}{2} \Pi^2 + \frac{1}{2} (\partial \phi)^2 + \frac{1}{2} m^2 \phi^2 + \mathcal{H}(\phi) \right).$$

But Π_ϕ is often absent from Z

and $\Pi^\mu_{\lambda \nu}$ in Π has no γ^μ. Even if we

write

$$\Pi^\mu_{\lambda \nu} \phi^4 = \frac{1}{2} \Pi^\mu_{\lambda \nu} \phi^4 - \frac{1}{2} \partial \mu \phi \gamma_{\lambda \nu} \phi,$$

by integrating by parts, things are not simpler

because now $\Pi_\phi \sim \phi^4$ but $\Pi_{\lambda \nu} \phi^4 \sim \phi^4$.

Let ϕ^m be those canonical variables that have

ϕ^m in Z. Let ϕ^r be those fields that

do not have ϕ^r in Z.
Then the conjugates of the Q^m are

$$P_m(x, t) = \frac{S L[Q(x), \dot{Q}(x), C(x)]}{5 \cdot \alpha^n(x, t)}$$

The C^r's have no conjugates because $\frac{\partial L}{\partial \dot{C}^r} = 0$.

So H is given

$$H = \sum \int d^3x \left(P_m \dot{Q}^m \right) - L[Q(x), \dot{Q}(x), C(x)]$$

in which C^r and \dot{Q}^r must be expressed in terms of Q^r and P_m.

In some cases (7.6) one may avoid actually solving for C^r & \dot{Q}^r. In gauge theories one must either pick a gauge (8) or use the F-P trick of \textit{II}.

To do perturbation theory, we use the interaction picture,

$$H = H_0(Q, P_m) + H I_{\delta x_0} (\dot{Q}^m, P_m)_{t=0}$$

$$= H_0(q, p) + V(q, p).$$
For example, $H = H_0 + V$

$H_0 = \int d^3x \frac{1}{2} \Pi^2 + \frac{1}{2} (\nabla \Phi)^2 + \frac{i}{2} m^2 \Phi^2$

$V = \int d^3x \varphi \Phi (\Phi)$.

Pass to interaction rep.

$H_0 \rightarrow i H_0 t \rightarrow H_0 t \phi (x, 0) \rightarrow \Phi (x, 0)$

$\Pi (x, 0) \rightarrow \Pi (x, 0)$

where

$H_0 = \int d^3x \frac{1}{2} \Pi^2 + \frac{1}{2} (\nabla \Phi)^2 + \frac{i}{2} m^2 \Phi^2 = \int d^3x H_0 e^{i H_0 t}$

which

$(7.1.21) \quad \phi (x, t) = e^{i H_0 t} \Phi (x, 0)$

$\Pi (x, t) = i \int d^3y \Pi (y, t) (i \delta (x - y) \rightarrow \Pi (x, t))$

$(7.1.22) \quad \phi (x, t) = \int d^3y \Pi (y, t) \pi (y, t)$

$= \int d^3y \int d^3y \int d^3y \int d^3y \int d^3y (\nabla \Phi)^2 + \frac{i}{2} m^2 \Phi^2 \Pi (x, t)$

$= i \Delta \phi - m^2 \phi = \phi$

$\Pi (x, t) = - \delta \Pi_0 = i \int \pi (x, t)$

So $(1 + m^2) \phi = 0$.

The general real solution is

$\phi (x) = \int \frac{d^3p}{2 \pi^{3/2} \sqrt{2 \nu^0}} \left[e^{i p x} a (p) + e^{-i p x} a^+ (p) \right]$

with

$p^0 = \sqrt{p^2 + m^2}$

$a (p)$ to be determined.

$\Pi (x) = \phi = - i \int \frac{d^3p}{2 \pi^{3/2} \sqrt{2 \nu^0}} \left[e^{i p x} a (p) - e^{-i p x} a^+ (p) \right]$.

$\phi (x) = \phi \rightarrow \phi (x, t) = e^{i H_0 t} \Phi (x, 0)$

$\Pi (x, t) = i \int d^3y \Pi (y, t) (i \delta (x - y) \rightarrow \Pi (x, t))$
Now we want

\[\left[\phi(x,t), \Pi(q,t) \right] = \delta(x-y) \]

\[\left[\phi(x',t), \Pi(q',t) \right] = 0 = \left[\Pi(x',t), \Pi(q',t) \right] \]

so we choose the \(a \)'s so that

\[\left[a(p), a^+(p') \right] = \delta^{(3)}(p-p') \]

and

\[\left[a(p), a(p') \right] = 0. \]

These formulae also give

\[H_0 = \int d^3k \sqrt{m^2 + k^2} \left(a^+(k) a(k) + \frac{1}{2} \right). \]

So in fact we chose \(\lambda \) was okay.

Say \(\delta I = \int \mathcal{M} F^m \). Then

\[\Delta I = \int \mathcal{M} \frac{\partial F^m}{\partial \phi} = \int \mathcal{M} \frac{\partial F^m}{\partial \Pi} \]

So the action changes only if the fields at the boundary make \(F^m \) antisymmetric.

In any case the equations of motion remain unchanged because they are derived under the assumption that \(\delta \phi = 0 \) on the boundary.

Similarly \(\delta I = \nabla \cdot F \) means that

\[\Delta L = \int \mathcal{M} \nabla \cdot F = \int \mathcal{M} \cdot F \]

which vanishes if \(F^m = 0 \) on the boundary of space.
Similarly, $\mathbf{S} \cdot \mathbf{F}$ will not affect the field equations.

If $\mathbf{S} \cdot \mathbf{F} = 0$, then clearly the equations of motion are unaffected.

How about the more general term

$$\Delta L(t) = \int d^3 x \ D_m(x) \dot{Q}^m(x, t)$$

i.e.

$$\Delta L = D_m(Q(x)) \dot{Q}^m(x).$$

$$\Delta P_m(x) = \frac{\delta \Delta L(t)}{\delta Q^m(x, t)} = \frac{\partial}{\partial Q^m(x)} \Delta L(x).$$

$$= D_m(Q(x), x).$$

$$\Delta H = \sum_n \int d^3 x \ D_m(x) \dot{Q}^m(x) - \Delta L$$

$$= \int d^3 x \sum_n D_m(x) \dot{Q}^m - \int d^3 x \sum_n \dot{Q}^m \dot{Q}^m = 0.$$

So $\Delta H = 0$. But

$$[P_m + \Delta P_m, P_m + \Delta P_m] = [\Delta P_m, P_m] + [P_m, \Delta P_m]$$

$$= [D_m, P_m] + [P_m, D_m]$$

$$= i \frac{S \delta m}{S \delta m} \text{ might not vanish.}$$
although \[[Q^n, Q^m] = 0 \text{ and} \]
\[[Q^n, P_m + P_m] = [Q^n, P_m] = i \delta^n_m \]
still work.

Now when

\[
\Delta L = \frac{dL}{dt} = \int dx \frac{\delta G}{\delta Q^n} \dot{Q}^n
\]

\[u \delta Z = \frac{\delta G}{\delta Q^n} \dot{Q}^n = \frac{dG}{dt} \]

then

\[\delta L = \frac{\delta G}{\delta Q^n} \dot{Q}^n \]

and so

\[
\delta D_m = \frac{\delta G}{\delta Q^n} \dot{Q}^n - i \left(\frac{\delta^2 G}{\delta Q^n \delta Q^n} - \frac{\delta^2 G}{\delta Q^n \delta Q^n} \right) = 0
\]

So the quantum structure as well as the classical structure of a theory is unaffected by partial integration.
Global Symmetries

Because the dynamics follow from a variational principle, the L. formalism facilitates the implementation of symmetries in the quantum theory.

Suppose under

$$\psi(x) \rightarrow \psi'(x) = \psi(x) + i e F^0(x)$$

the nett

$$I[\psi] = \int dt L[\psi(t)]$$

is invariant,

$$0 = \delta I = i e \int dx \frac{\delta I}{\delta \psi^0(x)} F^0(x)$$

in which e is a constant (hence global).

Now in fact if $$\psi(x)$$ obeys the field
equations, then $$\delta I = 0$$ to order e. Here
we assume $$\delta I = 0$$ even if the $$\psi^0$$s do not
satisfy the field equations. This is a global symmetry.

Consider now the local transformation

$$\psi(x) \rightarrow \psi'(x) = \psi(x) + i e(x) F^0(x)$$

in which $$e(x) \rightarrow 0$$ as $$x \rightarrow \infty$$. That since
due to the symmetry $$\delta I = 0$$ to constant
e, here $$\delta I \neq 0$$ but $$\delta I$$ has the simple
form
\[\delta I = -\oint d^4x \frac{J^u(x)}{dx^u} \delta e(x) \]

whether or not the fields \(e^u(x) \) satisfy their field equations. This result also follows from the assumption that \(I \) involves only the first derivatives of the fields and is invariant for constant \(e \).

But if the fields do obey their field equations, then

\[0 = \delta I = \int d^4x \, e(x) \, \partial_m J^m(x). \]

Since \(e(x) \) is arbitrary, at finite \(x \), we have the conservation law

\[0 = \frac{\partial}{\partial x^u} J^u(x), \]

Its integral form is

\[0 = \frac{d}{dt} \int d^3x \, J^0(x) = \int d^3x \, \frac{\partial}{\partial t} J^0(x), \]

\[= \int d^3x \, \nabla \cdot J = -\int d^3x \, J^i, \]

which vanishes if the fields vanish at \(x \to \infty \).

This is Noether's theorem: symmetries imply conservation laws.
If \(L(t) \) and not just \(I \) is invariant under the symmetry transformations, then suppose

\[
\psi^0(x) \to \psi^0(x) = \psi^0(x) + i e^t \chi \mathcal{F}^0(x),
\]

Then

\[
SI = i \int dt \int d^3 x \left[\frac{\delta L}{\delta \psi^0(x,t)} \frac{\partial}{\partial \chi} \mathcal{F}^0(x,t) \right] + \frac{\delta L}{\delta \psi^0(x,t)} \frac{\partial}{\partial \psi^0(x,t)} \mathcal{F}^0(x,t) \frac{d}{dt} \left(e^t \mathcal{F}^0(x,t) \right)
\]

Now by the symmetry of \(L(t) \)

\[
0 = \int d^3 x \left(\frac{\delta L}{\delta \psi^0(x,t)} \mathcal{F}^0(x,t) + \frac{\delta L}{\delta \psi^0(x,t)} \frac{\partial}{\partial \psi^0(x,t)} \mathcal{F}^0(x,t) \right) \text{ (at each } t) \]

so in general

\[
SI = i \int dt \int d^3 x \frac{\delta L}{\delta \psi^0(x,t)} \mathcal{F}^0(x,t) = -i \int d^3 x J^0 \cdot \frac{\delta \mathcal{F}^0}{\delta \psi^0(x,t)}
\]

so

\[
0 = SI = i \int dt \int d^3 x \frac{d}{dt} \left(\frac{\delta L}{\delta \psi^0(x,t)} \mathcal{F}^0(x,t) \right) = F(t_2) - F(t_1)
\]

\[
F = \int d^3 x J^0 = -i \int d^3 x \frac{\delta L}{\delta \psi^0(x,t)} \mathcal{F}^0(x,t)
\]

This is invariant for any fields that obey their field equations and vanish at \(x^2 \to \infty \).
Examples of such symmetries are the translations and rotations.

Under some symmetry transformations, such asospin, colour, or other internal symmetries, the lagrangian density L is itself invariant.

Then

$$ST = i \int d^4x \frac{\partial L}{\partial \epsilon^m} \frac{\partial}{\partial (\partial_m \epsilon^l)} \left(F^{il} \right)$$

But the symmetry of L means that

$$\frac{\partial L}{\partial \epsilon^m} F^{il} + \frac{\partial}{\partial \epsilon^m} \epsilon_i^m F^{il} = 0 \quad \text{(at each } x \text{)}$$

So for arbitrary fields ϵ^m

$$ST = i \int d^4x \frac{\partial L}{\partial (\partial_m \epsilon^l)} F^{il}$$

$$= -i \int d^4x \epsilon^l G(x) \frac{\partial}{\partial (\partial_m \epsilon^l(x))} \left(\frac{\partial L}{\partial (\partial_m \epsilon^l(x))} F^{il}(x) \right)$$

which vanishes if the fields obey the dynamical equations. So

$$J^m(x) = -i \int \frac{\partial L}{\partial (\partial_m \epsilon^l(x))} F^{il}(x)$$

in agreement; $\int J^m = 0$.

When \(\mathcal{L}(x) \) is invariant under

\[
\mathcal{L}'^q(x) = \mathcal{L}^q(x) + \epsilon(x) F^q(x)
\]

then by using Lagrange's equations one has

\[
0 = \frac{\partial}{\partial t^q} \mathcal{L}^q + \frac{\partial}{\partial x^i} \frac{\partial}{\partial (\partial_x x^i)} \mathcal{L}^q (i \in F^q)
\]

\[
= \frac{\partial}{\partial \mu} \left(\frac{\partial}{\partial (\partial_x x^i)} \right) \mathcal{L}^q + \frac{\partial}{\partial x^i} \frac{\partial}{\partial (\partial_x x^i)} \mathcal{L}^q (i \in F^q)
\]

\[
= \frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial (\partial_x x^i)} \mathcal{L}^q \right]
\]

So

\[
j^q = \frac{\partial}{\partial \mu} \mathcal{L}^q (i \in F^q)
\]

is conserved:

\[
0 = \frac{\partial}{\partial \mu} j^q
\]

The conserved quantity is

\[
Q = \int d^3x \, j^q = \int d^3x \, \frac{\partial}{\partial \mu} \mathcal{L}^q (i \in F^q)
\]

\[
= \int d^3x \, \Pi^{0}_q (x) i \in F^0(x)
\]

W. we have \(-Q\), which is also conserved.
The quantum aspects are clearest when the canonical fields transform into \mathbb{R}^3-dependent functionals of themselves at the same time,

$$\Psi'(x) = \Psi(x) + i\epsilon(x) F^0[Q(t); \vec{x}]$$

Spatial rotations and translations are examples, as are all infinitesimal internal symmetries. Here F is the conserved generator of the symmetry.

$$F = \int d^3 x \, J^0 = -i \int d^3 x \frac{1}{2} \chi \frac{\partial}{\partial x^\mu} F^\mu(x)$$

$$= -i \int d^3 x \, p_\mu(x) F^\mu[Q(t); \vec{x}']$$

F is time independent. So we may choose the t' in F' to be the same as that of $Q'(x')$.

$$\begin{align*}
\left[F, Q^\mu(x,t) \right] &= -i \int d^3 x' \left[p_\mu(x', t), Q^\nu(x', t) \right] F^\nu[Q(x'), \vec{x}'] \\
&= - \int d^3 x' \delta(x-x') \left[\partial_\nu F^\nu(x', \vec{x}) \right] \\
&= -F^\nu[Q(x); \vec{x}']
\end{align*}$$

So F is the generator, that is,

$$e^{-i e F} e^{i e F} = e^{i e F} e^{-i e F} \approx Q(x, t) + i e F \left[Q(x, t), P_\mu(\vec{x}, t) \right].$$

On $P_\mu F$ gives

$$\begin{align*}
\left[F, P_\mu(x, t) \right] &= -i \int d^3 x \, p_\mu(x) \left[F^0[Q(t); P_\mu(x, t)], \right]
\end{align*}$$
\[[F, P_n(x, t)] = \int d^3x' P_0(x', t) \frac{\delta F^0(Q, x)}{\delta Q^m(x, t)} \]

If \(F^0 \) is linear in \(Q^m \), as is normally the case, then \(F^0 = -a^m Q^m \) and

\[[F, P_n(x, t)] = \int d^3x' P_0(x', t) \delta(x - x') a^m \]

\[= a^m P_0(x, t) \]

while

\[[F, Q^m(x, t)] = -F^0 = -a^m Q^m. \]

One says that \(P_n \) transforms contragrediently to \(Q^m \).

For example, translations have action invariant,

\[\psi^0(x) \rightarrow \psi^0(x + \epsilon) = \psi^0(x) + \epsilon^m \partial_m \psi^0(x), \]

Now we have \(\psi^0 \)'s and \(F^0 = -i \partial_m \psi^0 \),

So there are \(J^m \)'s, \(J^m \),

\[\partial_m J^m = 0 \]

Usually we write \(J^m = T^m \)

\[\partial_m T^m = 0 \]

The conserved quantities are

\[P_\nu = \int d^3x J^0 = \int d^3x T^0 \]
Under \(\psi(x) \rightarrow \psi'(x) = \psi(x) + \epsilon^m \partial_m \psi(x) \), we expect \(\psi(x) \) to turn into:

\[
\psi'(x) = \psi(x + \epsilon) = \psi(x) + \epsilon^m \partial_m \psi(x).
\]

So

\[
\epsilon^m \partial_m \psi = \frac{\partial \psi}{\partial \psi^l} \epsilon^m \partial_m \psi^l + \frac{\partial \psi}{\partial \partial_m \psi^l} \partial_m (\epsilon^m \partial_m \psi^l).
\]

So

\[
0 = \partial_l \left[-\epsilon^m \delta_m^l \frac{\partial \psi}{\partial \psi^l} + \frac{\partial \psi}{\partial \partial_m \psi^l} \partial_m (\epsilon^m \partial_m \psi^l) \right] = \partial_l \left[T^l_m \right]
\]

setting \(T^l_m = \delta^l_m - \frac{\partial \psi}{\partial \partial_m \psi^l} \partial_m \psi^l \),

we see that

\[
0 = \partial_l T^l_m \quad \text{when}
\]

\[
P_m = \int d^3x T^0_m \quad \text{is conserved.}
\]

\[
\overrightarrow{P} = \int d^3x \frac{\partial \psi}{\partial \psi^l} \overrightarrow{\nabla} \psi^l
\]

momentum

\[
= - \int d^3x \overrightarrow{P} \cdot \overrightarrow{D} \psi^l = - \int d^3x \overrightarrow{P} \cdot D \overrightarrow{Q}^l
\]
\[-H = P_0 = \int d^3 x \: T^0_0 = \int d^3 x \: \mathcal{T} - \frac{\partial}{\partial \phi} \phi e \]

\[H = \int d^3 x \: \Pi_\phi \phi^4 - \lambda = \int d^3 x \: P_\phi \phi^4 - \lambda \]

So

\[[\bar{P}^\phi, Q^\phi(x, \tau)] = -\int d^3 y \: [P_\phi \nabla^\tau Q^\phi(y, \tau), Q^\phi(x, \tau)] \]

\[= i \int d^3 y \: S^m_n S(x-y) \nabla^\tau, Q^\phi(y, \tau) \]

\[= i \nabla Q^\phi(x, \tau) \]

\[[\bar{P}^\phi, P_m(x, \tau)] = -\int d^3 y \: [P_\phi \nabla^\tau P^m(y, \tau)] \]

\[= -\int d^3 y \: [\nabla P_\phi \phi^0, P_m(x, \tau)] \]

\[= i \int d^3 y \: S^m_n S(x-y) \nabla P_\phi(y, \tau) \]

\[= i \nabla P_m(x, \tau) \] Thus

\[[\bar{P}^\phi, G(Q, P)] = i \nabla G(Q(x, \tau), P(x)) \]

\(\bar{P} \) generates translations in space as \(H \) does in time

\[[H, G(Q, P)] = -i \dot{G}(Q, P) \]
In which \(P_L = 0 \)

as long as the fields vanish as \(x \to \infty \).

\[L \text{ is invariant under spatial translations. So } \exists \ P_L \text{ are concerned. (3.11)} \]

\[P_i = -i \int d^3x \left(\frac{\partial}{\partial x_i} \right) F^0 \]

\[= -i \int d^3x \left(\frac{\partial}{\partial x_i} \right) (-i) \frac{d^3k}{(2\pi)^3} \]

\[= -\int d^3x \ P_L \partial_i Q^L \]

\[P^L = -\int d^3x \ P_L \nabla Q^L \]

Thus

\[[P_i, Q^L (x,t)] = i \nabla \delta(x-x') \]

\[[P_L, P_m (x,t)] = -i \int d^3x' P_L (x',t) \nabla' \delta(x-x') \]

\[= -i \int d^3x' P_L (x',t) \nabla' \delta(x-x') \]

\[= i \int d^3x' \delta(x-x') \nabla' P_m (x',t) \]

\[= i \nabla P_m (x,t) . \]

So any \(G(x,p) \) that does not depend upon \(x \)

explicitly \([P_L, G(x)] = i \nabla G(x) \).

So \(P \) generates spatial translations.
The action is invariant under time translation, as long as the Lagrangian $L(t)$ depends on time t only through the fields $\Psi^\mu(x)$ and not explicitly.

\[S = \int dt \left[\frac{\delta L(t)}{\delta \dot{\Psi}^\mu(x)} \dot{\Psi}^\mu(x) + \frac{\delta L(t)}{\delta \Psi^\mu(x)} \Psi^\mu(x) \right] d^3x \]

\[= \int dt \left[\frac{\delta L(t)}{\delta \dot{\Psi}^\mu(x)} \dot{\Psi}^\mu(x) + \frac{\delta L(t)}{\delta \Psi^\mu(x)} \Psi^\mu(x) \right] d^3x + \delta L(t) \dot{\Psi}^\mu(x) \left. \frac{d}{dt} \right|_{\Psi^\mu(x)} \]

This vanishes when the fields follow their dynamical equations,

\[0 = \int dt \left[-L + \int d^3x \left(\frac{\partial L}{\partial \Psi^\mu(x)} \right) \Psi^\mu(x) \right] \]

[\text{Thus}]

\[H = -L + \int d^3x \left(P(x) \Psi^\mu(x) \right) \]

in conserved, $H = 0$.

355.5
Twin translations don't leave $L(E)$ fixed.

H is their generator:

$[\mathbf{H}, G(x)] = -i \dot{G}(x)$

$G(x) = G \left[Q(x), P(x) \right] ,

Twin translations leave I fixed. Suppose

$I [4] = \int d^4 x \mathcal{A} (x)$

is fixed under

$\psi_- (x) \rightarrow \psi_-' (x) = \psi_- (x + \varepsilon (x)) = \psi_- (x) + \varepsilon ^m \partial _m \psi_- (x)$

when $\varepsilon (x) = \varepsilon$. Then

$S [4] = \int d^4 x \frac{\partial}{\partial \psi_-} \varepsilon ^m \partial _m \psi_- + \frac{\partial ^2}{\partial (\partial \psi_-)^2} \varepsilon ^m \partial _m \psi_- + \frac{\partial ^2}{\partial (\partial \psi_-)^2} \partial _m \psi_- \varepsilon ^m$

$= \int d^4 x \frac{\partial}{\partial \psi_-} \varepsilon ^m (x) + \frac{\partial ^2}{\partial (\partial \psi_-)^2} \partial _m \psi_- \varepsilon ^m$

$= \int d^4 x \left(-\delta ^m _n \partial _n \varepsilon ^m + \frac{\partial ^2}{\partial (\partial \psi_-)^2} \partial _m \psi_- \varepsilon ^m \right)$

$= \int d^4 x \left(\delta ^m _n \partial _n - \frac{\partial ^2}{\partial (\partial \psi_-)^2} \partial _m \psi_- \varepsilon ^m \right)$

$= -\int d^4 x \ T^v _m \partial _v \varepsilon ^m$ with

$T^v _m = \delta ^v _m \partial _v - \frac{\partial ^2}{\partial (\partial \psi_-)^2} \partial _m \psi_- \varepsilon ^m = J^v _m$
For \(\nu = 0 \) and \(\mu = i \) we get as before

\[
\int d^3x J^0_i = \int d^3x T^0_i = -\int d^3x P^\mu_i \partial_{\mu} Q^i = P_i
\]

while for \(\mu = 0 = \nu \) we get

\[
\int d^3x J^0_0 = \int d^3x T^0_0 = \int d^3x \mathcal{L} - P^\mu Q^\mu = -\mu = P_0.
\]

(NB \(T^{\mu\nu} \) is not symmetric. In GR use \(\Theta^{\mu\nu} \) of 7.4.)
Suppose \(X(x) \) is invariant under \(\), then

\[Q'^n(x) = Q^n(x) + i e^a T^m_a Q^n_m \]

\[C'^n(x) = C^n(x) + i e^a T^n_a C^s(x) \]

Thus

\[0 = \frac{\partial}{\partial Q^n} i e^a T^m_a Q^n_m + \frac{\partial}{\partial (\partial Q^n)} \left(i e^a T^m_a Q^n_m \right) \]

\[+ \frac{\partial}{\partial C^n} i e^a T^n_a C^s + \frac{\partial}{\partial (\partial C^n)} \left(i e^a T^n_a C^s \right) \]

and by Lagrange's equations

\[0 = \partial m \left[\frac{\partial}{\partial (\partial Q^n)} i e^a T^m_a Q^n_m + \frac{\partial}{\partial (\partial C^n)} i e^a T^m_a C^s \right] \]

If the \(e^a \)'s are constants, then the conserved currents are

\[J^m_a = -i \frac{\partial}{\partial (\partial Q^n)} T^m_a Q^n_m - i \frac{\partial}{\partial (\partial C^n)} T^n_a C^s \]

and

\[0 = \partial m J^m_a \]
The conserved charges are

\[T^a = \int d^3x \mathbf{J}_a \]

\[= -i \int d^3x \frac{\partial}{\partial \mathbf{Q}^m} \mathbf{t}^a_{mn} \mathbf{Q}^m + \frac{\partial}{\partial \mathbf{\xi}^n} \mathbf{T}^a_{\xi} \mathbf{C}^s \]

\[= -i \int d^3x \frac{\partial}{\partial \mathbf{Q}^m} \mathbf{t}^a_{mn} \mathbf{Q}^m \]

\[= -i \int d^3x \mathbf{P}^m \mathbf{t}^a_{mn} \mathbf{Q}^m. \]

The ETCK's now give
Suppose the action invariant under
\[Q^a(x) = Q^a(x) + i \delta^a_{\lambda} \delta \theta^m Q^m(x) \]
\[C^r(x) = C^r(x) + i \delta^r_{\lambda} \delta \theta^s C^s(x) \]
on the canonical fields \(Q^a \) and the auxiliary fields \(C^r \). If \(L(x) \) is invariant, then (7.3.11) implies that the operator
\[T^a = -i \int \delta^3 x \, P_e(x, \xi) \, \delta \theta^m Q^m(x, \xi) \]
\[\xi \in \text{conserved.} \]
Now the ETCI's give
\[[T^a, Q^m(x)] = -i \int \delta^3 y \, \delta \theta^m Q^m(x, \xi) \]
\[= -i \int \delta^3 y \, \delta \theta^m \delta \xi \cdot \delta \phi \cdot \delta \theta^r C^r(x, \xi) \]
\[= -T^a \theta^m Q^m(x, \xi) \]

And
\[[T_a, P_m(x)] = P_e \theta^m, \]
If \(T_a \) is diagonal, then \(Q^a \) and \(P_m \) respectively lower and raise the value of \(T^a \) by \(\delta^a_m \).

\[[T_a, T_b] = -i \int \delta^3 x \, \delta^3 y \, \delta \theta^m Q^m(x, \xi) \]
\[= -i \int \delta^3 x \, \delta \theta^m \theta^m \delta \theta^a \delta \theta^b \delta \theta^c \delta \theta^d \left(i \delta^m_{\xi \cdot \delta \phi} \right) \]
\[= -i \theta^m \delta^m \theta^a \delta \theta^b \delta \theta^c \delta \theta^d \]
\[= -i \delta^a_{\delta \phi} \theta^m \theta^m \delta \theta^d \]
If the ta's form a lie algebra with structure constants f_{abc}, that is,

$$[t_a, t_b] = i f_{abc} t_c,$$

then

$$[T_a, T_b] = i \int d^3 x \ P_m Q^n t_b \ t^e \ t^m - P_0 Q^n t^e t_0,$$

$$= -i \int d^3 x \ P^m (t_a t_b - t_b t_a) Q,$$

$$= -i \int d^3 x \ P^m (t a b c t_e) Q,$$

$$= \int d^3 x \ f_{abc} P_e t^e_m Q^n,$$

$$= i f_{abc} (-i) \int d^3 x \ P_e t^e c m Q^n,$$

$$= i f_{abc} T_c.$$

The T_a's generate the group.

If $L(x)$ is invariant under these

transformations, then

$$0 = \frac{\partial L}{\partial Q^m} \ i e^a \ t^m Q^n + \frac{\partial L}{\partial (t^m Q^n)} \ d_m (i e^a \ t^m Q^n),$$

$$+ \frac{\partial L}{\partial (C^a)} \ i e^a T^a_5 C^5 + \frac{\partial L}{\partial (d_m C^a)} (i e^a T^a_5 C^5).$$

Using the dynamics we have

$$0 = \frac{\partial L}{\partial (t^m Q^n)} \ i e^a \ t^m Q^n + \frac{\partial L}{\partial (d_m C^a)} i e^a T^a_5 C^5,$$

$$= d_m J^m e^a$$
Then the current
\[
J^a_m = -i \frac{\partial}{\partial x^a} \epsilon_{mnr} Q^n = -i \frac{\partial}{\partial (x^a C^a)} T^a \Phi^s
\]
is conserved
\[0 = \partial_m J^m_a \]
for each \(a\).

Suppose \(\Phi(x) \) is invarient under
\[
\Phi'(x) = \exp \left[i \frac{\phi \theta^a}{2} \right] \Phi(x)
\]
where \(\Phi(x) = (\phi_1(x)) \) both \(\phi_i \)s being complex.

For instance
\[
L = -\partial_m \Phi^+ \partial^m \Phi - m^2 \Phi^+ \Phi - \phi_1 \Phi^+ \Phi.
\]
The conserved currents are
\[
J^m_a = -i \frac{\partial}{\partial x^a} \epsilon_{mnr} \phi^i = i \partial^m \Phi^+ \frac{\partial}{2} \phi^i.
\]

In general the time components of the currents are
\[
J^0_a = -i \partial^m \epsilon_{mnr} \phi^i = -i \partial^m \Phi^+ \frac{\partial}{2} \phi^i.
\]

In this example\(\phi^+ = \phi^+ = -P \phi \)
\[
J^0_a = -i \partial^m \epsilon_{mnr} \phi^i = -i \phi_1 \phi^+ \frac{\partial}{2} \phi^i.
\]
In general

\[[J_0^a (x, t), Q^m (y, t)] = [-i \eta^a_0 \gamma^m \delta^3 (x - y), Q^m] \]

\[= - \eta^a_0 \gamma^m Q^m (x, t) \delta^3 (x - y) \]

And

\[[J_0^a (x, t), P^m (y, t)] = [-i \eta^a_0 \gamma^m \Delta^m, P^m] \]

\[= \delta^3 (x - y) \eta^a_0 \gamma^m P^m (x, t) \]

If the auxiliary fields \(C^m (x, t) = C^m (Q(x, t), P(x, t)) \)
and transform correctly, then also

\[[J_0^a (x, t), C^m (y, t)] = - \delta^3 (x - y) \eta^a_0 \gamma^m C^m (x, t) \]

One may write these rules as

\[[J_0^a (x, t), \phi^0 (y, t)] = - \delta^3 (x - y) \eta^a_0 \gamma^0 \phi^0 (x, t) \]

Such relations are used in QCD Ward identities.
Locally invariance

The action is invariant under

\[x'^\mu = \Lambda^\mu_\nu x^\nu \]

with \(\Lambda_{\mu\nu} = -\Lambda_{\nu\mu} \). So we expect it to be conserved currents

\[M^{\mu\nu} \]

with

\[\partial_\mu M^{\mu\nu} = 0 \]

\[M^{\mu\nu} = -M^{\nu\mu} \]

and conserved currents

\[J^{\mu\nu} = \int d^3x \, M^{\mu\nu} \]

\[\frac{d}{dt} J^{\mu\nu} = 0. \]

How does \(\partial_\lambda \Phi(x) \) transform?

\[\partial_\lambda \Phi(x^\prime) = \partial_\lambda \Phi(x) \frac{\partial x^\prime}{\partial x^\nu} = \Lambda^\nu_\lambda \partial_\nu \Phi(x) \]

So

\[\delta \partial_\lambda \Phi(x^\prime) = \omega^\lambda_\nu \partial_\nu \Phi(x) \]

\[u(\Lambda) \psi^e_x(x) \tilde{u}(\Lambda) = D_{\lambda\lambda'}(\Lambda^{-1}) \psi^e_{\lambda'}(\Lambda x) \]

\[u(\Lambda) \psi^e_x(x) \tilde{u}(\Lambda) = D_{\lambda\lambda'}(\Lambda) \psi^e_{\lambda'}(\Lambda^{-1} x) \]

In this case

\[D_{\lambda\lambda'}(\Lambda) \psi^e_{\lambda'}(\Lambda^{-1} x) = (\delta_{\lambda\lambda'} + \frac{i}{2} \omega^{\mu\nu}_{\lambda\lambda'} \psi^e_{\lambda'})(\Lambda^{-1} x) \]
So on we switch to Λ^{-1}

\[\Lambda^{-1} \nu = \Lambda^{-1} \nu = \delta \nu^m + \omega \nu^m \]

So derivatives transform as

\[\delta \partial_\lambda \phi(x') = \omega^\lambda_k \partial_k \phi(x') \]

where $x' = \Lambda^{-1}x$.

Hence

\[\delta (\partial_\lambda \psi^e) = \frac{i}{2} \omega^\lambda_k \partial_k \psi^m - \omega_k^\lambda \partial_k \psi^e \]

\[U(\Lambda^{-1}) \mathcal{L}(x) U(\Lambda^{-1}) = \mathcal{L}(\Lambda^{-1}x) \]

So apart from $x' = x$, \mathcal{L} is invariant.

That is under (x) with no change in x, $\mathcal{L}(x)$ is invariant, whereas

\[0 = \frac{\partial L}{\partial \psi^e} \frac{i}{2} \omega^\lambda_m \partial_\lambda \psi^m \]

\[+ \frac{\partial L}{\partial \psi^e} \left[\frac{i}{2} \omega^\lambda_m \partial_\lambda \psi^m + \omega_k^\lambda \partial_k \psi^e \right] \]

\[= \frac{\partial L}{\partial (\partial_\lambda \psi^e)} \frac{i}{2} \omega^\lambda_m \partial_\lambda \psi^m \]

\[+ \frac{\partial L}{\partial (\partial_\lambda \psi^e)} \left[\frac{i}{2} \omega^\lambda_m \partial_\lambda \psi^m + \omega_k^\lambda \partial_k \psi^e \right] \]
Now \[w_k \cdot \Sigma_\ell \psi^\ell = \eta_k \sigma \cdot w_\sigma \cdot \partial \cdot \psi \]
\[= \frac{1}{2} \eta_k \sigma \left(w^\sigma \cdot \not{\partial} - w^\partial \cdot \not{\sigma} \right) \psi \]
\[= \frac{1}{2} \left(\eta_k \sigma w^{\mu \nu} \partial_\mu - \eta_{k \nu} w^{\mu \nu} \partial_\mu \right) \psi \]
\[= \frac{1}{2} \left(\eta_{k \nu} w^{\mu \nu} \partial_\mu - \eta_{k \mu} w^{\mu \nu} \partial_\nu \right) \psi \]

So cancelling \(w^{\mu \nu} \), we have
\[0 = 2k \left(\frac{\partial \ell}{\partial (\partial \psi)} \right)^2 \frac{1}{2} \partial_{\mu \nu} \partial^\ell \psi^\ell \]
\[+ \frac{2k}{2 (\partial \psi)} \left[\frac{1}{2} i \partial_{\mu \nu} \partial_k \psi^\ell + \frac{1}{2} \left(\eta_{k \mu} \partial_\nu - \eta_{k \nu} \partial_\mu \right) \psi \right] \]
\[= 2k \left[\frac{1}{2} \frac{\partial \ell}{\partial (\partial \psi)} \partial_{\mu \nu} \partial^\ell \psi^\ell \right] \]
\[+ \frac{1}{2} \frac{2k}{2 (\partial \psi)} \left(\eta_{k \mu} \partial_\nu - \eta_{k \nu} \partial_\mu \right) \psi \]

Recall (7.3.34) \[T^\ell \mu = \delta^\ell \mu - \frac{\alpha k}{\partial (\partial \psi)} \partial \psi \]
Then
\[T^\ell \mu - T^\ell \nu = - \frac{\partial \psi}{\partial (\partial \psi)} \partial_k \psi^\ell + \frac{\partial \psi}{\partial \psi} \partial_k \psi^\ell \]
So,
\[0 = \partial_k \left[\frac{i}{2} \frac{\partial}{\partial (\partial_k \psi^k)} (\partial^{\mu} \psi^\mu) \partial^k \psi^k + \frac{1}{2} \left(\frac{\partial}{\partial (\partial^\mu \psi^\mu)} \psi^k - \frac{\partial}{\partial (\partial^k \psi^k)} \psi^\mu \right) \right] \]

\[0 = \partial_k \left[J + \frac{1}{2} (T_{mn} - T_{nm}) \right] \quad (7.4.10) \]

So the A.S. part of T_{mn} is a total divergence.

The Belinfante tensor Θ is
\[\Theta^{\mu\nu} = T^{\mu\nu} - \frac{i}{2} \partial_k \left[\frac{\partial}{\partial (\partial_k \psi^k)} (\partial^{\mu} \psi^\mu) \partial^k \psi^k - \frac{\partial}{\partial (\partial^k \psi^k)} (\partial^\mu \psi^\mu) \partial_k \psi^k \right] \]

in which $\partial_k \frac{1}{2} (T_{mn} - T_{nm})$ A.S. in μ, ν, k.

Hence $\partial_k \Theta^{\mu\nu} = \partial^m T^{m\nu} - \frac{1}{2} \partial^m \partial_k \left[J \right]$

\[= \partial^m T^{m\nu} = 0. \]

And
\[\int \Theta^{\mu\nu} d^3x = \int d^3x (T^{\mu\nu} - \frac{1}{2} \partial_k \left[\partial_{[\mu} \partial_{\nu]} \psi^k \right]) \]

\[= \int d^3x \left(T^{\mu\nu} - \frac{1}{2} \partial^m \partial_k \left[\partial_{[\mu} \partial_{\nu]} \psi^k \right] \right) = \int d^3x \partial_{[\mu} T^{\nu]} = \rho^\nu. \]

Hence $\rho^\nu = H$.

\[\quad 2. \left[\text{AS} \right] = 0 \]
So $\Theta^{\mu v}$ is as good as $T^{\mu v}$. But $\Theta^{\mu v}$ is symmetric:

$$\Theta^{\mu v} - \Theta^{v \mu} = T^{\mu v} - T^{v \mu} - i \partial_k \left[\frac{\partial}{\partial \partial_k \eta^p} \right] F^{\mu \nu} F_{\mu \nu} + i \partial_k \left[\frac{\partial}{\partial \partial_k \eta^p} \right] F^{\mu v} F_{\mu v}$$

because the second two terms in $\Theta = T - []$ are μ, ν symmetric. But by (7.4.10) from

$$\Theta^{\mu v} = \Theta^{v \mu}.$$

This is the source of the quark internal field.

Since Θ is symmetric,

$$M^{\lambda \mu \nu} = x^\lambda \Theta^{\lambda \mu} - x^\nu \Theta^{\lambda \mu}$$

is conserved:

$$\partial_\lambda M^{\lambda \mu \nu} = x^\lambda \partial_\lambda \Theta^{\lambda \mu} - x^\nu \partial_\lambda \Theta^{\lambda \mu} + 8 \lambda \Theta^{\lambda \mu} - 8 \lambda \Theta^{\lambda \mu} = \Theta^{\mu v} - \Theta^{v \mu} = 0.$$

So the density

$$J^{\mu v} = \int M^{0 \mu \nu} d^3 x = \int d^3 x \left(x^\mu \Theta^{\mu v} - x^v \Theta^{\mu v} \right)$$

is constant,

$$J^{ij} = \frac{i}{2} \epsilon^{ijk} J^{ij}$$

is both constant and free of any explicit time dependence. So it obeys

$$0 = \left[H, J \right].$$
By 7.3.28 \[[\hat{p}^2, G(x)] = i \hat{\nabla} G(x) \]

\[[p_j, J_i] = \frac{i}{2} \varepsilon_{ijk} [p_j, \Theta^{0k}] \]

\[= \frac{i}{2} \varepsilon_{ijk} \int d^3x \ x^0 [p_j, \Theta^{0k}] - x^k [p_j, \Theta^{0k}] \]

\[= \frac{i}{2} \varepsilon_{ijk} \int d^3x \ x^0 \delta_j^0 \Theta^{0k} - x^k \delta_j^0 \Theta^{0k} \]

\[= \frac{i}{2} \int d^3x \ \delta_j^0 \Theta^{0k} - \delta^0_j \Theta^{0k} \]

\[= \frac{i}{2} \int d^3x \ \varepsilon_{ijk} \Theta^{0k} = -\varepsilon_{ijk} P_k \]

which we usually write as

\[[p_i, J_j] = i \varepsilon_{ijk} P_k \]

The boost \(K \) does not involve \(\varepsilon \) explicitly but is time independent.

\[K = \int d^3x \ (x^k \Theta^{0k} - x^0 \Theta^{0k}) \]

\[= -t P_k + \int d^3x \ x^k \Theta^{00}(x,t) \]

\[\Theta = K = -\hat{p}^2 + i [\hat{H}, K] \]

So \[[H, K] = -i \hat{p}^2 \] (2.4.24)
\[(1.3.28) \Rightarrow [P^j, G] = i \Delta G. \quad \text{So} \]
\[
[P_j, K_k] = \int d^3 y \ y_k [P_j, \Theta^{00}] = i \int d^3 y \ y_k \partial \Theta^{00}
\]
\[
= i \int d^3 y \ y_k \frac{\partial \Theta^{00}}{\partial y_j} = -i \int d^3 y \ S^k_j \Theta^{00}
\]
\[
= -i \delta^k_j H
\]

Thus:
\[
[P_j, K_k] = -i \delta^k_j H. \quad (2.4.22)
\]

In general \(K \) is smooth, i.e.,
\[
\text{Hot} \int d^3 x \ x^i \Theta^{00} = \text{Hot}
\]
\[
\langle \rho \left(d^3 x \right)^i \Theta^{00} \rangle \rightarrow 0 \quad \text{as} \quad \epsilon \rightarrow 0
\]

where \(\Theta^{00} \) is the non-Ho part of \(\Theta^{00} \).

This resotheser and \([M, k] = -i P^j \) causes \(\rho_0 \)

Her Lorents in d'cance of the \(S \)-matiex.

The \(J^{ij} \)'s are:

\[
J^{ij} = \int d^3 x \left(x^i \Theta^{0j} - x^j \Theta^{0i} \right)
\]
\[
= \int d^3 x \left(x^i \left[\Theta^{0j} - \frac{i}{\hbar} \partial \Theta^{0j} \right] \partial_x \left[\Theta^{0j} \right] \right. \\
\left. - \frac{2 i}{\hbar} \left[\Theta^{0j} \right] \partial_x \left[\Theta^{0j} \right] \right)
\]

\[(1.3.28) \]
\[J^{i j} = \int d^3x \, \psi^i \Gamma^{0 j} + \frac{i}{2} \left[\frac{\partial \psi^i}{\partial (\partial \psi^j)} \begin{pmatrix} \partial \psi^j & \partial \psi^j \\ \partial \psi^j & \partial \psi^j \end{pmatrix} - \psi^i \Gamma^{0 j} \right] - \psi^i \Gamma^{0 j} \]
Note there were no ϕ's here. But ϕ^0 mixes ϕ^1 with ϕ^0 and so ϕ^1 is with ϕ^0's. So the
self-dimension of $[J^0, J^1]$ requires a case-by-case
dimension.

The Interaction Picture

Scalar field with derivative coupling

$$\mathcal{L} = -\frac{1}{2} \frac{d}{d^3x} \phi^2 \nabla^2 \phi - \frac{i}{2} m^2 \phi - \vec{J} \cdot \nabla \phi - V(\phi)$$

where J^μ may be external or composed of other
fields.

$$\Pi = \frac{\partial L}{\partial \dot{\phi}^*} = \dot{\phi} - J^0$$ \hspace{1cm} (H's fields)

$$N_{\mu \nu}
\Pi = \int d^3x \left(\Pi J^0 - \chi \right)$$

$$= \int d^3x \left(\Pi J^0 \right) + \frac{i}{2} \left(\nabla \phi \right)^2 - \frac{1}{2} \left(\Pi + J^0 \right)^2 + \frac{1}{2} m^2 \phi^2$$

$$+ \vec{J} \cdot \nabla \phi + J^0 \left(\Pi + J^0 \right) + V(\phi)$$

$$= \int d^3x \left(\frac{1}{2} \Pi^2 + \Pi J^0 + \frac{i}{2} \left(\nabla \phi \right)^2 + \frac{1}{2} m^2 \phi^2 + V(\phi) \right)$$

$$+ \frac{1}{2} J^0 + \vec{J} \cdot \nabla \phi$$

We choose to do pert. theory. We know Π_0.

$$\mathcal{H} = \mathcal{H}_0 + V$$

$$\mathcal{H}_0 = \int d^3x \left(\frac{1}{2} \Pi^2 + \frac{i}{2} \left(\nabla \phi \right)^2 + \frac{1}{2} m^2 \phi^2 \right)$$

So $V = \int d^3x \left(\Pi J^0 + \nabla \phi \cdot \vec{J} + \frac{i}{2} J^0 \right) + V(\phi)$.

All fields on this page are Heisenberg fields.
The interaction fields $\phi(x,t)$ and $\pi(x,t)$ are the Heisenberg fields at $t=0$ and evolve with t via H_0. H_0 is fixed in the int. picture.

\[
H_0 = H_0(t) = \int d^3x \left\{ \frac{1}{2} \pi^2 + \frac{i}{2} (\partial \phi)^2 + \frac{i}{2} \bar{\pi}^2 \right\}, \quad \{ \phi, \pi \}
\]

and

\[
V(t) = \int d^3x \left[\pi \mathcal{J}^0 + \partial \phi \cdot \mathcal{J} + \frac{i}{2} \mathcal{J}^0 \mathcal{J} + \mathcal{L}(\phi) \right]. \quad \{ \text{int. picture} \}
\]

Now

\[
\Pi = \dot{\phi} - \mathcal{J}^0 = i \left[H_0, \phi \right] - \mathcal{J}^0 = i \left[H_0, \phi \right]
\]

\[
\Pi = \frac{\partial}{\partial t} \left[\phi \right] = i \left[H_0, \phi \right] = \dot{\phi} \quad \text{at } t=0.
\]

So in $V(t)$ we may set

\[
\Pi(x,0) = i \left[H_0, \phi(x,0) \right] = \dot{\phi}
\]

and then evolve Π with H_0. Then $\Pi(x,t) = \dot{\phi}(x,t)$ in which both follow H_0's time evolution.

\[
V(t) = \int d^3x \partial \phi \mathcal{J}^0 + \frac{i}{2} \mathcal{J}^2 + \mathcal{L}(\phi),
\]

in which the need for the non-covariant term

\[
\frac{1}{2} \mathcal{J}^2
\]

cancels a non-covariant term in the ϕ propagator as explained in 6.2, Eq. (6.2.27).
Vector field of spin one (H's fields)

\[\mathcal{L} = -\frac{1}{2} \alpha \partial_\mu V^\mu \partial^\nu V_\nu - \frac{1}{2} \beta \partial_\mu V^\mu \partial^\nu V_\nu - \frac{i}{2} m^2 V^\mu V_\mu + j_\mu V^\mu \]

\[\frac{\partial}{\partial V^\mu} \left(\left(-\alpha \partial^\nu V_\nu - \beta \partial_\nu (\partial_\mu V^\mu) \right) \right) = \frac{\partial \lambda}{\partial V^\mu} = -m^2 V_\mu + j_\mu \]

\[-\alpha \partial_\mu V^\mu - \beta \partial_\nu (\partial_\mu V^\mu) + m^2 V_\mu = j_\mu \]

\[- (\alpha + \beta) \partial_\mu \partial_\nu V^\mu + m^2 \partial_\mu V^\mu = \partial_\mu j^\mu \]

This describes a scalar field \(\partial_\mu V^\mu \) of mass \(m^2 (\alpha + \beta) \) and source \(\partial_\mu j^\mu / (\alpha + \beta) \).

To prevent this field from being dynamical, we set \(\alpha = -\beta = 1 \) so that

\[\mathcal{L} = -\frac{1}{2} \partial_\mu V^\mu \partial^\nu V_\nu + \frac{i}{2} m^2 V^\mu V_\mu + j_\mu V^\mu \]

We set \(F_{\mu \nu} = \partial_\mu V_\nu - \partial_\nu V_\mu \), whence

\[F_{\mu \nu} F^{\mu \nu} = \partial_\mu V_\nu \partial^\nu V^\mu + \partial_\nu V_\mu \partial^\mu V^\nu - \frac{1}{2} \partial_\mu V^\mu \partial^\nu V_\nu - \frac{1}{2} \partial_\nu V^\nu \partial^\mu V_\mu \]

\[= 2 \partial_\mu V_\nu \partial^\mu V^\nu - 2 \partial_\mu V_\nu \partial^\nu V^\mu \]

So

\[\mathcal{L} = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} - \frac{1}{2} m^2 V_\mu V^\mu + j_\mu V^\mu \]

Now \(\frac{\partial \lambda}{\partial V^\mu} = -F^{\mu \nu} = 0 \) if \(m = 0 \).

\[\frac{\partial}{\partial V^\mu} \]
So the \(V^i \)'s \(i = 1, 2, 3 \) are canonical fields with

\[
\Pi^i = \partial \xi^i - F^i_0 = F^{i0} = \partial_i V^0 - \partial^0 V^i \tag{10}
\]

and \(F^{00} = 0 = m^2 V^0 \) in \(\Phi \). So \(V^0 \) is an auxiliary field. Its field equation is

\[
\partial_0 V^0 = -m^2 V^0 + J^0 = \partial_i \partial_i \xi^0 = -\partial_i F^{i0} \quad \partial_0 \xi^0
\]

\[
\partial^0 \partial_0 = m^2 V^0 - J^0 \quad \text{like Gauss's law}
\]

which has no \(V^m \) terms at all. It's a constraint, which we use to solve for \(V^0 \)

\[
V^0 = \frac{1}{m^2} (J^0 + \partial_i F^{i0})
\]

\[
= \frac{1}{m^2} (\nabla \cdot \Pi + J^0).
\]

Now

\[
\Pi = \int d^3 x \ \Pi \cdot \nabla - 2
\]

By (10), \(\Pi = \nabla V^0 + \dot{V}^0 \), so \(\dot{V}^0 = \Pi - \nabla V^0 \) or

\[
\dot{V}^0 = \Pi - \frac{1}{m^2} \nabla (\nabla \cdot \Pi + J^0).
\]
\[H = \int d^3x \, \pi \cdot \nabla \cdot \nabla (\nabla \cdot \pi + J^0) \]
\[= \int d^3x \, \left(\pi - \frac{1}{m^2} \nabla \cdot \left(\nabla \pi + J^0 \right) \right) - \frac{\pi^2}{2} + \frac{1}{2} \left(\nabla \pi \cdot \nabla \pi \right) + \frac{1}{2 m^2} \left(\nabla \cdot \left(\nabla \pi + J^0 \right) \right) \]
\[+ \frac{1}{2} m^2 V^2 - J \cdot V + \frac{J^0 \left(\nabla \cdot \pi + J^0 \right)}{m^2} \]
\[= \int d^3x \, \frac{1}{2} \pi^2 + \frac{1}{2} \left(\nabla \pi \cdot \nabla \pi \right) + \frac{1}{2 m^2} V^2 + \frac{1}{2} \nabla \pi \]
\[+ \int d^3x \, \frac{J^0 \nabla \cdot \pi - J \cdot V + J^0}{m^2} \]
\[= H_0 + V \quad \text{So far all fields are Heisenberg fields.} \]

In terms of L.P. fields \(\pi \neq 0 \)
\[H_0 = \int d^3x \, \frac{1}{2} \pi^2 + \frac{1}{2 m^2} \left(\nabla \pi \cdot \nabla \pi \right) + \frac{1}{2} \left(\nabla \pi \right)^2 + \frac{1}{2} m^2 \nu^2 \]
\[V = \int d^3x \, -J \cdot V + m^2 \frac{J^0 \nabla \cdot \pi}{m^2} + \frac{1}{2 m^2} J^0 \nu^2. \]

So
\[\nu = i \left[H_0, \nu \right] = \pi^2 - \frac{1}{m^2} \nabla \left(\nu, \pi \right) \text{in the L.P.} \quad (7.5.20) \]

To evaluate
\[\pi = i \left[H_0, \pi \right] - m^2 \nu \]

we first write
\[\int d^3x \, \left(\nabla \pi \cdot \nabla \pi \right) = \int d^3x \, \epsilon_{ij} \epsilon_{kl} \frac{d_j V_k + d_k V_i}{m^2} \]
\[= \int d^3x \, \left(\epsilon_{ij} \delta_{km} - \delta_{jm} \epsilon_{kl} \right) \frac{d_j V_k + d_k V_i}{m^2} = \int d^3x \, \frac{d_j V_k + d_k V_i}{m^2} - \frac{d_j V_k + d_k V_i}{m^2}, \]
\[\int d^3x \left(\nabla \cdot \mathbf{v} \right)^2 = \int d^3x \left(\mathbf{v}_k \mathbf{\nabla} \cdot \mathbf{v}_k - \partial_k \left(\mathbf{v}_k \right) \partial_j \mathbf{v}_j \right) \]

\[= \int d^3x \left(\mathbf{v}_k \mathbf{\nabla} \cdot \mathbf{v}_k + \mathbf{v}_k \partial_k \partial_j \mathbf{v}_j \right) \]

\[= \int d^3x \left(\mathbf{v}_k \mathbf{\nabla} \cdot \mathbf{v}_k \right) + \mathbf{v} \cdot \mathbf{\nabla} \left(\nabla \cdot \mathbf{v} \right) \]

Then

\[\mathbf{\Pi} = i \left[H_0, \mathbf{\Pi} \right] = -m^2 \mathbf{\Pi} - \nabla \left(\mathbf{\Pi} \cdot \mathbf{\Pi} \right) \]

\[\mathbf{\Pi} \text{ is the I. P. at } t = 0 \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \left[H_0, \mathbf{\Pi} \right] + \nabla \left(\mathbf{\Pi} \cdot \mathbf{\Pi} \right) \]

So \[\mathbf{\Pi} = \mathbf{\Pi} - \nabla \left(\mathbf{\Pi} \cdot \mathbf{\Pi} \right) \]

\[\text{by } (\star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star \star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star \star \star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star \star \star \star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star \star \star \star \star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star \star \star \star \star \star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star \star \star \star \star \star \star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star) \]

\[\mathbf{\Pi} = \mathbf{\Pi} = \mathbf{\Pi} \]

\[\text{by } (\star \star \star) \]
\[\int d^3x \left(\nabla u \right)^2 = \int d^3x \left(-u_k \partial^2_v + u \partial (\nabla u) \right) \]

Then
\[\pi = i \left[H_0, \pi \right] \]

\[= i \int d^3x \left[-\frac{1}{2} u \cdot \nabla^2 u + \frac{1}{2} \nabla (\nabla u) + \frac{m^2 v^2}{2} \right] \pi \]

\[= \nabla^2 u - \nabla (\nabla u) - m^2 u \quad (7.5.21) \]

Now \(V^0 \) does not appear in \(H_0 \) in \(v \). We may define
\[v^0 = m^2 \nabla \pi. \quad (7.5.22) \]

Then \((7.5.20) \) gives
\[\dot{\pi} = \pi - \nabla v^0 \quad (7.5.23) \]

by \((22) \)

\[\nabla \cdot \dot{\pi} = \nabla \cdot \pi - \nabla^2 v^0 = m^2 v^0 - \nabla^2 v^0 \quad \Rightarrow \]

\[\nabla^2 v^0 + \nabla \cdot \dot{\pi} - m^2 v^0 = 0 \quad (\text{con}) \]

and \((21) \) & \((23) \) give
\[\pi = \dot{\pi} + \nabla v^0 = \nabla^2 u - \nabla (\nabla u) - m^2 u \quad \Rightarrow \]

\[\nabla^2 u - \nabla (\nabla u) - \dot{u} - \nabla v^0 - m^2 u = 0 \quad \Rightarrow \]

\[\nabla v^i - \partial_j u_j - \partial_i \partial_j v^0 - m^2 v^0 = 0 \quad \Rightarrow \]

\[\nabla v^i - \partial_j \partial_j v^i - m^2 v^i = 0 \quad (\text{con}) \]
\((\text{con})_0\) : \(\Box v^0 + \Box (v^\nu v^\nu) - m^2 v^0 = 0\) \(\Box\)

\(\Box v^0 - \Box (v^\nu v^\nu) - m^2 v^0 = 0\) \(\text{(con')}\)

So \((\text{con}) \text{ & } (\text{con'})\) now give

\(\Box v^\mu - \Box (v^\nu v^\nu) - m^2 v^\mu = 0\) \(\text{(24)}\)

\(\Box \partial^\mu v^\nu - \Box (v^\nu v^\nu - m^2) \partial^\mu v^\mu = 0\) \(\text{(25)}\)

whence

\((\Box - m^2) v^\mu = 0\) \(\text{(26)}\)

and

\(\partial^\mu v^\mu = 0\) \(\text{(25')}\)
So \[\nabla u^m - \partial^m u^\nu \nabla_\nu - m^2 u^m = 0 \]

\[\square u^m - \partial \partial u^m - m^2 \partial u^m = 0 \]

where \(m^2 = 0 \).

(26)

A real vector field obeying (25-26) may be written as

\[u^m(x) = \sum_s \int \frac{d^3 p}{2 \sqrt{2 \pi} \hbar} \left\{ \begin{array}{cc} e^m(p, \nu) a(p, 0) e_{\nu} & \nu = \sigma + 1, 0, -1, \\
 \end{array} \right. \]

with \(p^0 = \sqrt{p^2 + m^2} \) and \(\sigma = 1, 0, -1, \)

\[p^m e^m(p, \nu) = 0 \]

and

\[\sum_{\nu} e^m(p, \nu) e^{\nu}(p, 0) = \eta^m_n + \frac{p^m p^n}{m^2}, \]

which is (5.3. 28-29).

In fact \(u^m \) and \(a^\dagger(p, 0) \) act by at equal times

\[[v_i(x, t), \pi^j(x', t')] = i \delta_{ij} \delta(x - x') \delta(t - t') \]

\[[v_i, v_i] = [\pi^i, \pi^i] = 0 \]

\[[a(p, \nu), a^\dagger(p', \nu')] = \delta_\nu^{\nu'} \delta(p - p') \]

\[[a(p, \nu), a(p', 0)] = 0. \]
Since the expansion (7.5.27) for $V^0(x)$ was derived in 5, these results show that H_0 is constant. One may show that

$$H_0 = \sum_o \int d^3p \ p^0 \left(a^2(p.r) a(p.r) + \frac{1}{2} \right).$$

Finally, by using $V^0 = 17.11/\text{m}^2$, we may write V as

$$V = \int d^3x - S_m V^0 + \frac{1}{2m^2} (F^0)^2$$

in which the term F^0 cancels a running kerne in the propagator of V^0 as shown in 6.
\(\chi = - \frac{i}{\hbar} (\gamma^\mu \partial_\mu + m) \psi - \mathcal{H}(\psi, \bar{\psi}) \).

\(\chi \) is real apart from a total divergence.

\(\chi - \chi^+ = - \frac{i}{\hbar} \sum_{\alpha} \gamma^\alpha \partial_\alpha \psi + \partial_\mu \gamma^\mu \gamma^\alpha (i \gamma^\beta \gamma^\alpha + i \gamma^\beta + \gamma^\alpha) \psi \)

\((i \gamma^\beta - \beta - \beta) \gamma^\mu \gamma^\beta = - \gamma^\mu \)

\(\chi - \chi^+ = - \frac{i}{\hbar} \sum_{\alpha} \gamma^\alpha \partial_\alpha \psi - \partial_\mu \gamma^\mu \gamma^\alpha \psi \)

\(= - \partial_\mu (\gamma^\mu \psi) \).

So \(\chi \) and \(\chi^+ \) generate the same field equations.

\(\Pi = \frac{\partial \mathcal{H}}{\partial \psi} = - \frac{i}{\hbar} \gamma^0 = - \frac{i}{\hbar} i \gamma^0 \gamma^0 = i \gamma^+ \)

\(\mathcal{H} = \int d^3 x \, \Pi \psi - \chi = \int d^3 x \, \Pi \psi + \frac{i}{\hbar} \gamma^0 \psi + \gamma^0 (\gamma^0 \mathcal{H} + m) \psi + \mathcal{H} \)

\(= \int d^3 x \, \Pi \psi - \Pi \psi + \frac{i}{\hbar} (\gamma^0 \gamma^0 + m) \psi + \mathcal{H} \)

\(= \int d^3 x \, \Pi \gamma^0 (\gamma^0 \gamma^0 + m) \psi + \mathcal{H} \)

\(= H_0 + \mathcal{V} \) \quad \Pi \gamma^0 \overset{\text{means}}{=} \Pi \gamma^0 \)

\(H_0 = \int d^3 x \, \Pi \gamma^0 (\gamma^0 \gamma^0 + m) \psi \)

\(\mathcal{V} = \int d^3 x \, \Pi \gamma^0 (\bar{\psi}, \psi) \).

\(\Pi = - \frac{\bar{\psi} \gamma^0}{\mathcal{M}^2} \quad \text{means} \quad \Pi = - \frac{i}{\hbar} \gamma^0 \).
\[\dot{\psi}_\alpha = i [H_0, \psi_\alpha] = i \int d^3x \left[\Gamma^0 (\gamma \cdot D + m) \psi, \psi_\alpha(x) \right] \]

\[= i \int d^3x' \delta^3(x - x') \left(\psi(x) \left(\gamma^0 \gamma \cdot (D + m) \psi(x') \right) \right)_\beta \]

\[= \int d^3x' \delta(x - x') \left(\gamma^0 \gamma \cdot (D + m) \psi(x') \right) \beta \]

\[= \left[\gamma^0 \gamma \cdot (D + m) \right]_\alpha \gamma \psi_\alpha(x) \]

\[\psi = \gamma^0 (\gamma \cdot D + m) \psi \]

\[\gamma^0 \psi_\alpha = - (\gamma \cdot D + m) \psi \]

\[(\gamma^0 \partial^\alpha + m) \psi = 0 \]

At equal times \[\left[\psi(x), \pi_\beta(x) \right] = \frac{i}{\hbar} \int d^3x' \left(\pi \gamma^0 \gamma \cdot (D + m) \psi(x') \right) \pi_\beta(x) \]

\[\pi = i \left[\chi_0, \pi \right] = i \int d^3x' \left(\pi \gamma^0 \gamma \cdot (D + m) \psi(x') \right) \pi_\beta(x) \]

\[= \pi \gamma^0 \gamma \cdot (D + m) \psi \]

which, since \[\pi = - i \gamma^0 \psi \] is

\[- \dot{\psi}^0 = - \gamma^0 \gamma \cdot (D + m) \]

\[i \dot{\psi}^+ = + \gamma^0 \gamma \cdot (D + m) \]

\[= - \gamma^0 \beta \left(\beta \gamma^0 \gamma \cdot (D + m) \right) = - \gamma^0 \beta \left(\gamma^0 \gamma \cdot (D + m) \right) \beta \]

\[i \dot{\psi}^\beta = - \gamma^0 \gamma \cdot (D + m) \beta \]

\[\dot{\psi}^0 = - \gamma^0 \gamma \cdot (D + m) \]

\[0 = \gamma^0 \gamma \cdot (D + m) \]

which in \(\left[0 = (\gamma^m \partial_m + m) \psi \right] \)}
The general solution of \(\psi = (\psi_1 \psi_2)^T \) is

\[
\psi(x) = \int \frac{d^3p}{(2\pi)^{3/2}} \frac{1}{Z} \left[u(p_0) e^{ip_0 x} + v(p_0) e^{-ip_0 x} \right]
\]

in which \(p_0 = \sqrt{p^2 + m^2} \), \(\alpha \) and \(\alpha^* \) are separation coefficients, and \(u(p_0) \) and \(v(p_0) \) are two independent solutions of

\[
(i\sigma_y \gamma^m + m) u(p_0) = 0
\]

and \(v(p_0) \) are two \(\gamma \)

\[
(-i\sigma_y \gamma^m + m) v(p_0) = 0
\]

normalized so that

\[
\sum_{p_0} u(p_0) \bar{u}(p_0) = \frac{1}{Z} \frac{1}{2p_0}
\]

\[
\sum_{p_0} v(p_0) \bar{v}(p_0) = -\frac{(i\gamma_y \gamma^m + m)}{2p_0}
\]

Here \(i\gamma_y \gamma^m \) has even's \(m \).

\[
-i\gamma_y \gamma^m \bar{u} = m \bar{u}
\]

\[
-i\gamma_y \gamma^m v = m v
\]

\[
(-i\gamma_y + m) \bar{v} = 2m \bar{v}
\]

\[
(i\gamma_y + m) v = 2m v
\]

\[
2m \Sigma v \bar{u} = (-i\gamma_y + m) \Sigma \bar{v} u
\]

\[
2m \Sigma \bar{u} v = (i\gamma_y + m) \Sigma u \bar{v}
\]

\[
\Sigma \bar{u} v = \frac{-i\gamma_y + m}{2m} \Sigma \bar{u} \bar{v} = \frac{i\gamma_y + m}{2m} \Sigma \bar{u} v = \frac{2m (\bar{u} \bar{v})}{2p_0}
\]

\[
\Rightarrow \bar{u} v = \frac{i\gamma_y}{2p_0}
\]
\[t \sum \sin^2 \beta = \sum u^2 u = 2 = \frac{t \left(-i p_0 Y^0 + m \right) Y^0}{2p^0} \]

\[= \frac{t - p_0 I}{2p^0} = \frac{1}{2} t I = 2 \]

\[t \sum \nu \nu = \sum v^2 v = -t \left[\frac{1}{2p^0} \right] \left(-i p_0 Y^0 + m \right) Y^0 \]

which verify the work done in 5, \((-\rho = 4)\)

To have the ETAC's : \(\pi = -4Y^0 p\)

\[\left[\psi_\alpha (x, t), \psi_\beta (x, t) \right]_+ = \left[\psi_\alpha (x, t), \pi \psi_\beta (x, t) \right]_+ Y^0 \]

\[= i \delta(x - x') \delta_\alpha \beta Y^0 \]

\[= i \delta(x - x') \delta_\alpha \beta \]

With \(\left[\psi_\alpha (x, t), \psi_\beta (x, t) \right]_+ = \delta_\alpha \beta \delta(x - x') \)

\[\left[\psi_\alpha (x, t), \psi_\beta (x, t) \right]_+ = 0 \]

\[\text{where} \quad \left[a(p, \rho), a^\dagger (p', \rho') \right]_+ = \delta \omega \delta(p - p') \]

\[\left[a(p, \rho), a^\dagger (p', \rho') \right]_+ = \delta \omega \delta(p - p') \]

\[\left[a, a^\dagger \right]_+ = \left[a, a^\dagger \right] = 0 < 0 = \left[a, a^\dagger \right] = \left[a, a^\dagger \right] \]

so \(\pi \leq 5\) : \(7, 5, 37\) is a gauge \(H_0\).

\[H_0 = \sum p^0 \left(a^\dagger (p, \rho) a(p, \rho) - a(p, \rho) a^\dagger (p, \rho) \right) \]

\[= \sum p^0 \left(a^\dagger (p, \rho) a(p, \rho) + a(p, \rho) a(p, \rho) - \delta^3 (p - p') \right) \]

\[\text{only quantum} \quad 5 \leq \gamma \]
Dirac Brackets

Primary constraints are imposed (e.g. as gauge conditions) or arise from L. Thus if f does not appear in L, then

$$\Pi_f \cdot \frac{\partial L}{\partial \Pi_f} = 0.$$

In general primary constraints arise when the equations

$$\Pi_f = \frac{\partial L}{\partial \dot{f}}$$

cannot be solved for the \dot{f}'s, i.e., when the matrix

$$M_{nm} = \frac{\partial^2 L}{\partial \dot{f}_n \partial \dot{f}_m} - \frac{\partial \Pi_n}{\partial \Pi_m} \frac{\partial \Pi_m}{\partial \Pi_n}$$

is singular, i.e., $\det M = 0$. Such L are irregular.

Secondary constraints arise from the field equations and the primary constraints. For the massive vector field, since $\Pi^a = 0$, the 0th field equation is

$$D_i T^i = m^2 V^0 - J^0.$$

In $5D$ we have Gauss's law $\nabla \cdot E = \rho = J^0$, which is a secondary constraint.