The Renormalization Group in Continuum Field Theory

Let's recall that when we computed vacuum polarization

\[g \rightarrow \frac{g}{\sqrt{m^2}} \]

in QED using dimensional regularization, we got

\[\Pi(q^2) = \frac{e^2}{2\pi^2} \int_0^1 x(1-x) \ln \left(1 + \frac{q^2 x(1-x)}{m^2} \right) \, dx \]

in which \(q^2 = q^2 - q_0^2 \) is the square of the photon's momentum.

Now \(\Pi(q^2) \) is dimensionless. So we'd expect from dimensional analysis that as \(q^2 \rightarrow \infty \)

\[\Pi(q^2, m^2, e^2) = \Pi(1, m^2, e^2) \rightarrow \Pi(1, 0, e^2) \]

That is, \(\Pi \) should go to a constant as \(q^2 \rightarrow \infty \). This behavior is spoiled by the log term.

Such large logarithms are generic. They occur because we used a renormalization scheme at a fixed \(q^2 \), namely \(q^2 = 0 \).
More generally, a quantity Γ of dimension D should vary with E as

$$\Gamma(E, x, g, m) = E^D \Gamma(1, x, g, \frac{m}{E})$$

and so we'd expect

$$\Gamma(E, x, g, m) \rightarrow E^D \Gamma(1, x, g, 0)$$

as $E \rightarrow \infty$. But large logs spoil this simple behavior if we renormalize at a fixed energy E.

So we try to renormalize at a sliding scale μ. Our coupling constant now is $g_\mu = g(\mu)$. Now

$$\Gamma(E, x, g_\mu, m, \mu) = E^D \Gamma(1, x, g_\mu, \frac{m}{E}, \frac{\mu}{E}).$$

And to compute Γ at E, we use $m = E$, so

$$\Gamma(E, x, g_\mu, m, \mu) = E^D \Gamma(1, x, g_\mu, \frac{m}{E}, 1).$$

The idea here is to have g_E independent of m for $E \gg m$. Then as $E \rightarrow \infty$ we may have

$$\Gamma(E, x, g_\mu, m, m) \rightarrow E^D \Gamma(1, x, g_E, 0, 1),$$

apart from possible non-perturbative corrections.
We expect
\[q_{m'} = G(q_m, m'/m, \frac{m}{m'}) \]

Then
\[\frac{dq_{m'}}{dm'} = \frac{1}{m} \frac{dG(q_m, z, \frac{m}{m'})}{dz} \bigg|_{z = m'/m} \]

So
\[m \frac{dq_{m'}}{dm'} = \frac{dG(q_m, z, \frac{m}{m'})}{dz} \bigg|_{z = m'/m} \]

And setting \(m' = m \), we have
\[m \frac{dq_m}{dm} = \frac{dG(q_m, \frac{m}{m})}{d(\frac{m}{m})} = \frac{dG(q_m, z, \frac{m}{m})}{dz} \bigg|_{z = 1}. \]

Thus for \(m >> m \), we find
\[m \frac{dq_m}{dm} = \beta(g_m, 0) \equiv \beta(g_m) \]

which is the Callan-Symanzik equation.
Integrating
\[\int_0^E \frac{dq_g}{\beta(q)} = \int_0^E \frac{dm}{m} = \ln(E/m). \]
We need to choose M so that for $\mu > M$ we can neglect m/M and so that $\ln (M/m)$ is not so big as to prevent us from using perturbation theory to compute g_M from g_0, the conventionally renormalized coupling constant.

Example: In the scalar theory with

$$\mathcal{L} = -\frac{1}{2} \partial_\tau \phi \partial_\tau \phi - \frac{1}{2} m^2 \phi^2 - \frac{1}{24} f \phi^4$$

the diagrams give

$$A = g - \frac{\theta^2}{32\pi^2} \int_0^1 dx \left\{ \ln \frac{\Lambda^2}{m^2 - s x (1-x)} + \ln \left(\frac{\Lambda^2}{m^2 - t x (1-x)} \right) - 3 \right\}$$

where Λ is a UV cut-off and

$$s = -(p_1 + p_2)^2, \quad t = -(p_1 - p_3)^2, \quad u = -(p_1 - p_2)^2$$

and $s + t + u = 4m^2$ when all p_i are on mass shell $p_i^2 = -m^2$.
In the conventional approach, we replace the bare g with g_R defined at some fixed scale, e.g.,
\[g_R \equiv A(s=t=a=0) = g - \frac{3g^2}{32\pi^2} \left\{ \ln \frac{\Lambda^2}{m^2} - 1 \right\}. \]

Setting $t = \frac{3}{32\pi^2} \left\{ \ln \frac{\Lambda^2}{m^2} - 1 \right\}$, we have
\[-t \frac{g^2}{4} + g - g_R = 0 \quad \text{or} \quad g = \frac{1}{2t} \pm \sqrt{\frac{1}{4t^2} - \frac{g_R}{t}}. \]

Anyway, A then is
\[A = g_R + \frac{g_R^2}{32\pi^2} \int_0^{\infty} dx \left\{ \ln \left(1 - \frac{tx(1-x)}{m^2} \right) + \ln \left(1 - \frac{tx(1-x)}{m^2} \right) + \ln \left(1 - \frac{nu(1-nu)}{m^2} \right) + \ldots \right\}, \]

and for large $s,t,$ and a
\[A \sim g_R + \frac{g_R^2}{32\pi^2} \left\{ \ln \left(-\frac{s}{m^2} \right) + \ln \left(-\frac{t}{m^2} \right) + \ln \left(-\frac{u}{m^2} \right) + b \right\}, \]
which has big logs as $s, -t, a, -u \to \infty$.

Instead, we'll define
\[g_m \equiv A(s=t=a=U = -m^2). \]
That is,

\[g_m = A \left(s^2 + t^2 = -\mu^2 \right) \]

\[= g - \frac{3g^2}{32\pi^2} \int_0^1 dx \left\{ \ln \left(\frac{\Lambda^2}{m^2 + \mu^2 x(1-x)} \right) - \frac{1}{3} \right\} + O(g^3) \]

In terms of \(g_R = g - \frac{3g^2}{32\pi^2} \left\{ \ln \left(\frac{\Lambda^2}{m^2} \right) - \frac{1}{3} \right\} \), this is

\[g_R = g_R + \frac{3g^2}{32\pi^2} \int_0^1 dx \ln \left(1 + \frac{m^2 x(1-x)}{m^2} \right) + O(g^3) \]

but this works only if \(|g_R \ln (\Lambda/m)| \ll 1 \).

But in terms of \(g_m \), \(g_m' \) is better behaved:

\[g_m = g - \frac{3g^2}{32\pi^2} \int_0^1 dx \left\{ \ln \Lambda^2 - \ln m^2 + \mu^2 x(1-x) - \frac{1}{3} \right\} \]

\[g_m = g - \frac{3g^2}{32\pi^2} \int_0^1 dx \left\{ \ln \Lambda^2 - \ln m^2 + m^2 x(1-x) \right\} \]

so

\[g_m' = g_m - \frac{3g^2}{32\pi^2} \int_0^1 dx \ln \left(\frac{m^2 + m^2 x(1-x)}{m^2 + \mu^2 x(1-x)} \right) \]

Here we replace \(g^2 \) with \(g_m^2 \) or \(g_m'^2 \) because the difference is of order \(g^3 \).
Now
\[\beta(g_m, \frac{m}{m'}) = \frac{d g_m}{d m'} \bigg|_{m'=m} \]
\[= \frac{3 g_m^2}{16 \pi^2} \int_0^1 dx \frac{m^2 x (1-x)}{m^2 + m'^2 x (1-x)} + O(g_m^3) \]

For \(m > m' \), this is
\[\beta(g_m) = \frac{3 g_m^2}{16 \pi^2} + O(g_m^3) \]

To two-loop order, the beta function is
\[\beta(g_m) = g_m \left(\frac{3 g_m}{16 \pi^2} - \frac{17}{3} \left(\frac{g_m}{16 \pi^2} \right)^2 \right) + \cdots \]

So to one-loop order
\[\frac{\ln E}{E} = \int \frac{dx}{x} = \int \frac{g_m^2}{g_m} \frac{dg}{\beta} = \sqrt{\frac{\int \frac{d g}{g_m}}{\frac{3 g_m}{16 \pi^2}}} = \frac{16 \pi^2}{3} \left[\frac{1}{g_m} - \frac{1}{g_E} \right] \]

which gives us after setting \(E = \mu \)
\[g_E = g_m = \frac{g_m}{1 - \frac{3}{16 \pi^2} g_m \ln \left(\frac{M}{m} \right)} \]

(\(m \to \) big legs!)
We may relate g_m to g_R by using (6), at values of $m > m^2$, where

$$g_m \approx g_R + \frac{3g_R^3}{32\pi^2} \int_0^1 dx \ln \frac{m^2}{m_2^2} x(1-x)$$

$$\approx g_R + \frac{3g_R^3}{32\pi^2} \int_0^1 dx \left[2 \ln \frac{m}{m_2} + \ln x(1-x) \right]$$

$$\approx g_R + \frac{3g_R^3}{16\pi^2} \ln \frac{\rho}{m}.$$

Although $m > m_2$, we want $|g_R \ln \frac{m}{m_2}| < < 1$.

So, for such a m, say $m = M$, we have

$$g_m = g_R \quad \text{whence for } m = E$$

$$g_m = \frac{g_R}{1 - \frac{3}{16\pi^2} g_R \ln \frac{M}{M} \rho}.$$

So, the ϕ^4 theory exhibits asymptotic slavery.

$$g_E = \frac{g_R}{1 - \frac{3}{16\pi^2} g_R \ln \frac{E}{M} \rho}.$$