Bohr Frequencies

Suppose \(H \) has \(N \) eigenstates \(\lvert \text{E}_n \rangle \)

\[
H \lvert \text{E}_n \rangle = \text{E}_n \lvert \text{E}_n \rangle
\]

all different. Then \(I = \sum_{n=1}^{N} \text{E}_n \times \text{E}_n! \).

Also

\[
\frac{-iHt}{\hbar} \lvert \text{E}_n \rangle = E_n \lvert \text{E}_n \rangle = \text{E}_n \lvert \text{E}_n \rangle
\]

and so the mean value of any operator \(A \) in the state \(\lvert \text{E}_n \rangle \) will vary as

\[
\langle \text{E}_n \lvert U(t) \ A \ U(t) \lvert \text{E}_n \rangle = E_n \langle \text{E}_n \lvert A \lvert \text{E}_n \rangle \text{e}^{rac{-iE_n t}{\hbar}} \text{e}^{rac{iE_n t}{\hbar}}
\]

\[
= \langle \text{E}_n \lvert A \lvert \text{E}_n \rangle \text{e}^{rac{iE_n t}{\hbar}}
\]

which is to say, not at all. It is constant in time. That's why eigenstates of \(H \) are called stationary states.

An arbitrary state \(\lvert 14 \rangle \) can be expanded as

\[
\lvert 14 \rangle = I \lvert 14 \rangle = \sum_{n=1}^{N} \text{E}_n \times \lvert \text{E}_n \rangle \implies \lvert 14 \rangle \text{e}^{\frac{iE_n t}{\hbar}}
\]

So the mean value of any operator \(A \) will in the state \(\lvert 14 \rangle \) will evolve as

\[
\langle 14 \lvert U^*(t) \ A \ U(t) \lvert 14 \rangle = \sum_{n=1}^{N} \sum_{m=1}^{N} \langle \text{E}_m \lvert \text{E}_n \rangle \langle \text{E}_n \lvert A \lvert \text{E}_m \rangle \text{e}^{i(E_m - E_n) t/\hbar}.
\]
The frequencies

\[W_{mn} = \frac{(E_m - E_n)}{\hbar} \]

are the Bohr frequencies. The time dependence of every operator is a linear combination of terms

\[i (E_m - E_n) \frac{t}{\hbar} = i W_{mn} t \]

with coefficients \(\langle 4 | E_n | E_m | A | E_n \rangle \).

If \(A \) is compatible with \(H \), that is, if

\[\{A, H\} = 0 \quad \text{(comp)} \]

then \(A \) and \(H \) are simultaneously diagonalizable. Equivalently, Eq. (comp) implies

\[0 = \langle E_m | [A, H] | E_n \rangle = (E_n - E_m) \langle E_m | A | E_n \rangle \]

Thus the mean value of any operator that commutes with \(H \) in an arbitrary state is

\[\langle \{4, U(t) A U(t)^\dagger \} \rangle = \sum_{m=1}^{N} \langle 4 | E_n | E_m | A | E_n \rangle \langle E_n | A | E_n \rangle \]

only involves the diagonal matrix elements \(\langle E_n | A | E_n \rangle \) and so has no time dependence, due to \(U(t) \). Of course, if \(A \) explicitly depends on \(\theta \), then so does \(\langle \{4, U(t) A U(t)^\dagger \} \rangle \).