Higher-Order Degenerate Perturbation Theory

Let me write our hamiltonian H in the odd form
H=hy+\V (1)
in which the level of hy we want to study has g eigenstates |mY)
holm?) = Ep|m) (2)

which span the subspace D. As we saw when we studied first-order per-
turbation theory, the first step is to define a projection operator Fy on D

Py = Z \m?)(mﬂ (3)

which, like all projection operators, satisfies P¢ = Py. The next step is to
diagonalize the g x g matrix Hy

Hy = ho + ARV P, (4)
and to find its g e-vecs |nY) and e-vals
E) = E}) + v (5)
by solving the system
Ho|ni) = (ho + ARV Ry) [nf) = Ep In) = (Ep + ;) [nf). (6)

The projection operator Py also is a sum of the dyadics of these e-vecs

g

Po=3"1n%)(nf]. (7)

=1

We shall assume that the Egi are all different. In this case, we may apply
non-degenerate perturbation theory to each of the g states |nl). We write
our hamiltonian H in the form

H = Hy + \W. (8)



In terms of the projection operator P; that is complementary to F,
Pi=1-Py=Y" K] )
k¢ D
the perturbation W is
W — V—P()VP(] - (P0+P1)V(P0+Pl)—POVPO - POVP1+P1VPQ+P1VP1.
(10)

We now apply non-degenerate perturbation theory to each of the g states
InY). We define the “safe” identity operator

n, =1 = |n) (]| (11)
and obtain from Sakurai’s (5.1.34) an equation for the exact e-vec |n;) of H
In;) = |nd) + L(AW — Ap,)|ng) (12)

7 E,?LZ _ HO (3

which implies that |n;) is an exact e-vec of H
Hln;) = En[ni) (13)

with energy
By, = Egi + Ay, (14)

We temporarily normalize the state |n;) in such a way that
(nglni) = 1. (15)
Since Eq. is equivalent to
(Ey, = Ho)lni) = (AW — Ay,)
Eqs.@ & imply that
0= (n[(Ey, — Ho)lni) = (nf|AW — A,,)

n;) (16)

ni) = Mni[Wing) — A, (17)

or

Ap, = Mni[Wng). (18)

Now we expand the e-state |n;) in powers of the small parameter A

In;) = |n?> + )\|n11> + )\2|n?> + ... (19)



so that by the power series
A, =) NAW (20)
k=1

for the change A,, = E,, — E_in the energy is

A, = M0 W i) = Mo [Wng) + X*(nf[W[ng) + A [Wn) + ... (21)
But by the operator W has no non-zero matrix elements between states
in D, and so A,, is just

An = AN YW nt) + N0l Wn2) + ... (22)

The first-order correction AS} to the energy is Av;, and it is included in Egi.
The second-order correction is, by our formula for W,

AR = (n}[Wn) = (0] |V Pi[n). (23)

We now substitute this expansion and the one for the e-state |n;)
into the e-value equation

n9) + Aty + A2[n2) + - =

O (AW = (NAD + XAP + )

0 —

x (Ind) + Alnj) + Xnd) +...) (24)
and identify equal powers of A. By Eq., the perturbation W is
W = PyVP, + P,VP, + P,VP,. (25)
and so after canceling the |n?)-terms one has
Pn,
EY — Hy

Pn;
ES — H,y
—NAD = XA — ]

x (Alnj)y + X nf) +...) . (26)

Mn}) +)\2|n?> +... = )\P1V\n?>

+ NPVP + PLVPy+ PVP)



So the first-order correction |n}) to the e-state is

1\ gbnl 0 ¢ni 1
or
In)) 2 P1V|n + Z An2|V Py|n})
J#z Z
:_m- RVM +§: (nl|V Py|n}). (28)
JED
J#u

By Eq., the second-order correction to the energy is

1

AEZ,) = (n]|V Pi|n}) = (n?|vplm

PV |nd). (29)

If one now expresses the projection operator P; in terms of dyadics, as in
Eq.@, then one has

3 1 Z| kolVln |2

2 — 0 0N - /10

A = (n; |V |k >E EO (k V| O . (30)
k¢D k¢D i

Since by (5)) the energy E0 itself contains the first-order correction Ej =
EY + \v;, our formula for the second-order correction contains a term

of order A\

0 10
Py E} + vy — B
If we drop it, then we get Sakurai’s (5.2.15)
k,O V 2
k¢ D

(with his typo corrected).
Finally, let’s cast our formulas & for |n}) in the more explicit form

qbni
EY — H,

ng

1
EY — H,

ng

1— /\POVP1] Ing) = PV|nd) (33)



or
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In;) = |1- E :vz_vjmj‘v 1 EC — H, 1Vng)



