
Higher-Order Degenerate Perturbation Theory

Let me write our hamiltonian H in the odd form

H = h0 + λV (1)

in which the level of h0 we want to study has g eigenstates |m0
i 〉

h0|m0
i 〉 = E0

D|m0
i 〉 (2)

which span the subspace D. As we saw when we studied first-order per-
turbation theory, the first step is to define a projection operator P0 on D

P0 =

g∑
i=1

|m0
i 〉〈m0

i | (3)

which, like all projection operators, satisfies P 2
0 = P0. The next step is to

diagonalize the g × g matrix H0

H0 = h0 + λP0V P0 (4)

and to find its g e-vecs |n0
i 〉 and e-vals

E0
ni

= E0
D + λvi (5)

by solving the system

H0|n0
i 〉 = (h0 + λP0V P0) |n0

i 〉 = E0
ni
|n0

i 〉 =
(
E0

D + λvi

)
|n0

i 〉. (6)

The projection operator P0 also is a sum of the dyadics of these e-vecs

P0 =

g∑
i=1

|n0
i 〉〈n0

i | . (7)

We shall assume that the E0
ni

are all different . In this case, we may apply
non-degenerate perturbation theory to each of the g states |n0

i 〉. We write
our hamiltonian H in the form

H = H0 + λW. (8)



In terms of the projection operator P1 that is complementary to P0

P1 = I − P0 =
∑
k/∈D

|k0〉〈k0| (9)

the perturbation W is

W = V −P0V P0 = (P0 +P1)V (P0 +P1)−P0V P0 = P0V P1 +P1V P0 +P1V P1.
(10)

We now apply non-degenerate perturbation theory to each of the g states
|n0

i 〉. We define the “safe” identity operator

φni
= I − |n0

i 〉〈n0
i | (11)

and obtain from Sakurai’s (5.1.34) an equation for the exact e-vec |ni〉 of H

|ni〉 = |n0
i 〉 +

φni

E0
ni
− H0

(λW − ∆ni
)|ni〉 (12)

which implies that |ni〉 is an exact e-vec of H

H|ni〉 = Eni
|ni〉 (13)

with energy
Eni

= E0
ni

+ ∆ni
(14)

We temporarily normalize the state |ni〉 in such a way that

〈n0
i |ni〉 = 1. (15)

Since Eq.(13) is equivalent to

(E0
ni
− H0)|ni〉 = (λW − ∆ni

)|ni〉 (16)

Eqs.(6) & 15) imply that

0 = 〈n0
i |(E0

ni
− H0)|ni〉 = 〈n0

i |(λW − ∆ni
)|ni〉 = λ〈n0

i |W |ni〉 − ∆ni
(17)

or
∆ni

= λ〈n0
i |W |ni〉. (18)

Now we expand the e-state |ni〉 in powers of the small parameter λ

|ni〉 = |n0
i 〉 + λ|n1

i 〉 + λ2|n2
i 〉 + . . . (19)



so that by (18) the power series

∆ni
=

∞∑
k=1

λk∆(k)
ni

(20)

for the change ∆ni
= Eni

− E0
ni

in the energy is

∆ni
= λ〈n0

i |W |ni〉 = λ〈n0
i |W |n0

i 〉 + λ2〈n0
i |W |n1

i 〉 + λ3〈n0
i |W |n2

i 〉 + . . . . (21)

But by (10) the operator W has no non-zero matrix elements between states
in D, and so ∆ni

is just

∆ni
= +λ2〈n0

i |W |n1
i 〉 + λ3〈n0

i |W |n2
i 〉 + . . . . (22)

The first-order correction ∆
(1)
ni to the energy is λvi, and it is included in E0

ni
.

The second-order correction is, by our formula (10) for W ,

∆(2)
ni

= 〈n0
i |W |n1

i 〉 = 〈n0
i |V P1|n1

i 〉. (23)

We now substitute this expansion and the one (19) for the e-state |ni〉
into the e-value equation (12)

|n0
i 〉 + λ|n1

i 〉 + λ2|n2
i 〉 + · · · =

|n0
i 〉 +

φni

E0
ni
− H0

(
λW − (λ2∆(2)

ni
+ λ3∆(3)

ni
+ . . . )

)
×

(
|n0

i 〉 + λ|n1
i 〉 + λ2|n2

i 〉 + . . .
)

(24)

and identify equal powers of λ. By Eq.(10), the perturbation W is

W = P0V P1 + P1V P0 + P1V P1. (25)

and so after canceling the |n0
i 〉-terms one has

λ|n1
i 〉 + λ2|n2

i 〉 + . . . =
φni

E0
ni
− H0

λP1V |n0
i 〉

+
φni

E0
ni
− H0

[λ(P0V P1 + P1V P0 + P1V P1)

−λ2∆(2)
ni

− λ3∆(3)
ni

− . . .
]

×
(
λ|n1

i 〉 + λ2|n2
i 〉 + . . .

)
. (26)



So the first-order correction |n1
i 〉 to the e-state is

|n1
i 〉 =

φni

E0
ni
− H0

P1V |n0
i 〉 +

φni

E0
ni
− H0

λP0V P1|n1
i 〉 (27)

or

|n1
i 〉 =

1

E0
ni
− H0

P1V |n0
i 〉 +

∑
j∈D

j 6=i

|n0
j〉

E0
ni
− E0

nj

λ〈n0
j |V P1|n1

i 〉

=
1

E0
ni
− H0

P1V |n0
i 〉 +

∑
j∈D

j 6=i

|n0
j〉

vi − vj

〈n0
j |V P1|n1

i 〉. (28)

By Eq.(23), the second-order correction to the energy is

∆(2)
ni

= 〈n0
i |V P1|n1

i 〉 = 〈n0
i |V P1

1

E0
ni
− H0

P1V |n0
i 〉. (29)

If one now expresses the projection operator P1 in terms of dyadics, as in
Eq.(9), then one has

∆(2)
ni

=
∑
k/∈D

〈n0
i |V |k0〉 1

E0
ni
− E0

k

〈k0V |n0
i 〉 =

∑
k/∈D

|〈k0|V |n0
i 〉|2

E0
ni
− E0

k

. (30)

Since by (5) the energy E0
ni

itself contains the first-order correction E0
ni

=
E0

D + λvi, our formula (30) for the second-order correction contains a term
of order λ

∆(2)
ni

=
∑
k/∈D

|〈k0|V |n0
i 〉|2

E0
D + λvi − E0

k

. (31)

If we drop it, then we get Sakurai’s (5.2.15)

∆(2)
ni

=
∑
k/∈D

|〈k0|V |n0
i 〉|2

E0
D − E0

k

(32)

(with his typo corrected).
Finally, let’s cast our formulas (27 & 28) for |n1

i 〉 in the more explicit form[
1 − φni

E0
ni
− H0

λP0V P1

]
|n1

i 〉 =
1

E0
ni
− H0

P1V |n0
i 〉 (33)



or

|n1
i 〉 =

[
1 − φni

E0
ni
− H0

λP0V P1

]−1
1

E0
ni
− H0

P1V |n0
i 〉 (34)

or

|n1
i 〉 =

1 −
∑
j∈D

j 6=i

|n0
j〉

vi − vj

〈n0
j |V P1


−1

1

E0
ni
− H0

P1V |n0
i 〉. (35)


