WEAK CHEMICAL BONDS

Organic molecules can interact with other molecules through three types of short-range attractive forces known as noncovalent bonds: van der Waals attractions, electrostatic attractions, and hydrogen bonds. The repulsion of hydrophobic groups from water is also important for ordering biological macromolecules.

Weak chemical bonds have less than 1/20 the strength of a strong covalent bond. They are strong enough to provide tight binding only when many of them are formed simultaneously.

VAN DER WAALS ATTRACTIONS

If two atoms are too close together they repel each other very strongly. For this reason, an atom can often be treated as a sphere with a fixed radius. The characteristic "size" for each atom is specified by a unique van der Waals radius. The contact distance between any two noncovalently bonded atoms is the sum of their van der Waals radii.

At very short distances any two atoms show a weak bonding interaction due to their fluctuating electrical charges. The two atoms will be attracted to each other in this way until the distance between their nuclei is approximately equal to the sum of their van der Waals radii. Although they are individually very weak, van der Waals attractions can become important when two macromolecular surfaces fit very close together, because many atoms are involved.

Note that when two atoms form a covalent bond, the centers of the two atoms (the two atomic nuclei) are much closer together than the sum of the two van der Waals radii. Thus,

HYDROGEN BONDS

As already described for water (see Panel 2–2), hydrogen bonds form when a hydrogen atom is "sandwiched" between two electron-attracting atoms (usually oxygen or nitrogen).

Hydrogen bonds are strongest when the three atoms are in a straight line:

Examples in macromolecules:

Amino acids in polypeptide chains hydrogen-bonded together.

Two bases, G and C, hydrogen-bonded in DNA or RNA.

HYDROGEN BONDS IN WATER

Any molecules that can form hydrogen bonds to each other can alternatively form hydrogen bonds to water molecules. Because of this competition with water molecules, the hydrogen bonds formed between two molecules dissolved in water are relatively weak.
HYDROPHOBIC FORCES

Water forces hydrophobic groups together, because doing so minimizes their disruptive effects on the hydrogen-bonded water network. Hydrophobic groups held together in this way are sometimes said to be held together by “hydrophobic bonds,” even though the apparent attraction is actually caused by a repulsion from the water.

ELECTROSTATIC ATTRACTIONS IN AQUEOUS SOLUTIONS

Charged groups are shielded by their interactions with water molecules. Electrostatic attractions are therefore quite weak in water.

Similarly, ions in solution can cluster around charged groups and further weaken these attractions.

Despite being weakened by water and salt, electrostatic attractions are very important in biological systems. For example, an enzyme that binds a positively charged substrate will often have a negatively charged amino acid side chain at the appropriate place.

ELECTROSTATIC ATTRACTIONS

Attractive forces occur both between fully charged groups (ionic bond) and between the partially charged groups on polar molecules.

The force of attraction between the two charges, δ⁺ and δ⁻, falls off rapidly as the distance between the charges increases.

In the absence of water, electrostatic forces are very strong. They are responsible for the strength of such minerals as marble and agate, and for crystal formation in common table salt, NaCl.

a crystal of salt, NaCl