The Calculus of Variations

As we saw when we discussed path integrals, the amplitude

\[-i\hbar \frac{\partial}{\partial \phi(x)} \int \mathcal{D}x(t) \mathcal{D}\phi(x(t)) \phi(0) \phi(T) = \langle \phi(x(T)) \phi(x(0)) \rangle \]

is

\[\exp \left(\frac{-i S[x]}{\hbar} \right) = \int \mathcal{D}x(t) e^{i S[x(t)]/\hbar} \]

where \(S[x] \) is the classical action

\[S[x(t)] = \int_0^T dt \left[\frac{\dot{x}^2}{2m} - V(x(t)) \right] \]

Two paths that differ by \(\delta x(t) \) may wash each other out unless the action \(S \) is stationary,

\[0 = \delta S \]

which means that \(\delta S \propto \delta x^2 \).

This is the principle of least action.

In fact, much of classical physics follows from a choice of \(S \) and the rule \(0 = \delta S \).

Example: (Note \(\delta x = \dot{x} + \delta \dot{x} - \dot{x} = d (\delta x)/dt \).)

\[\delta S = \int_0^T dt \left[m \delta x \delta \dot{x} - V' \delta x + O(\delta x^2) \right] \]

\[= \int_0^T dt - \delta x \left(m \ddot{x} + V' \right) + \left[m \delta x \right]_0^T, \]

since we dropped \(\delta x^2 \).
If the two paths \(x(t) \) and \(x(t) + \delta x(t) \) both go from \(x(0) \) to \(x(T) \), then

\[
\delta x(0) = \delta x(T) = 0
\]

and the boundary terms vanish. Then

\[
\delta S = - \int_0^T dt \left(m \dddot{x} + V' \right) \delta x
\]

so \(\delta S \propto \delta x^2 \), and not \(\delta x \propto \delta S \), then

\[
0 = \delta S = - \int_0^T dt \left(m \dddot{x} + V' \right) \delta x
\]

and since \(\delta x \) is arbitrary (but small), we get

\[
m \dddot{x} + V' = 0 \quad \text{or} \quad m \dddot{x} = -V' \quad \text{or}
\]

\[
m \dddot{x} = F = ma = \frac{\partial V(x)}{\partial x}
\]

In books on classical mechanics, one often uses generalized coordinates \(q_i(t) \) so that

\[
S = \int_0^T dt \, L(q, \dot{q}, t),
\]

in which \(q \) and \(\dot{q} \) stand for \(q_1, \ldots, q_n \), etc.
Now the action S will be stationary if

$$0 = \delta S = \frac{d}{dt} \left(\frac{\partial S}{\partial \dot{\delta} q_i} \right) + \frac{\partial S}{\partial \delta q_i}.$$

Now

$$\delta \dot{\delta} q_i = \dot{q}_i + \dot{\delta} q_i - \dot{\delta} q_i = \frac{d}{dt} \delta q_i,$$

so again integrating by parts, we have

$$\delta S = \int_0^T \left(\delta \dot{\delta} q_i \left(\frac{\partial L}{\partial \delta q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\delta} q_i} \right) + \left[\frac{\partial L}{\partial \delta q_i} \delta \dot{\delta} q_i \right] \right) dt.$$

If all the paths go from $q_i(0)$ to $q_i(T)$, then

$$\delta q_i(0) = \delta q_i(T) = 0 \quad \text{and we have}$$

$$0 = \int_0^T \left(\frac{\partial L}{\partial \delta q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\delta} q_i} \right) dt \quad \text{and} \quad \frac{\partial L}{\partial \delta q_i} = 0.$$

The canonical momentum p_i is

$$p_i = \frac{\partial L}{\partial \dot{\delta} q_i} \quad \text{and so}$$

Lagrange's equations imply

$$\dot{p}_i = \frac{\partial L}{\partial q_i}.$$
Usually the Lagrangian \(L(\phi, \dot{\phi}) \) does not involve \(t \) explicitly. In this case, one may define a Hamiltonian \(H \) that is conserved:

\[
H = \sum_{i=1}^{N} p_i \dot{\phi}_i - L
\]

To see that \(H \) vanishes, just take its time derivative:

\[
\dot{H} = \sum_{i=1}^{N} \left(p_i \ddot{\phi}_i + p_i \ddot{\phi}_i - \frac{\partial L}{\partial \dot{\phi}_i} \dot{\phi}_i - \frac{\partial L}{\partial \phi_i} \phi_i \right)
\]

But \(p_i = \frac{\partial L}{\partial \dot{\phi}_i} \) and \(\dot{p}_i = \frac{\partial L}{\partial \phi_i} \), so \(\dot{H} = 0 \).

Now suppose \(L(\phi, \phi_i) \) is a Lagrange density that depends on the fields \(\phi, \phi_1, \ldots, \phi_N \) and their derivatives

\[
\phi_{ij} = \frac{\partial \phi_i}{\partial x_j},
\]

Assume \(\delta \phi_i = 0 \) when any argument \(x_k \to \pm \infty \), so we can drop all surface terms. Then

\[
L = \int d^3x L \quad \text{and} \quad S = \int d^4x \, L = \int d^3x \, L.
\]

The requirement that \(SS \) be quadratic or higher in \(\delta \phi \) gives

\[
0 = \delta S = \int d^4x \left(\frac{\partial L}{\partial \phi_i} \delta \phi_i + \frac{\partial L}{\partial \phi_{ij}} \delta \phi_{ij} \right)
\]
Now \(S \delta \phi_{ij} = (\phi_i + \delta \phi_i)_{ij} - \phi_{ij} = \delta \phi_{ij} \)

where \(G_{ij} = \frac{\partial G}{\partial x} \), as before, so

\[
0 = 8 \mathcal{S} = \int d^4x \; S \phi_i \left(\frac{\partial \mathcal{K}}{\partial \phi_i} - \left(\frac{\partial \mathcal{K}}{\partial \phi_{ij}} \right)_{ij} \right) + \mathcal{S} \mathcal{T} \]

whence the field equations

\[
0 = \frac{\partial \mathcal{K}}{\partial \phi_i} - \frac{1}{2} \left(\frac{\partial \mathcal{K}}{\partial \phi_{ij}} \right)_{ij} .
\]

In this way, one does field theory.
Langrange Multipliers

Suppose one wants to find \(x \) and \(y \) that maximize \(f(x, y) \) subject to the constraint \(g(x, y) = c \), a constant. Set

\[
H(x, y, \lambda) = f(x, y) + \lambda (g(x, y) - c)
\]

and find the \(x, y, \) \& \(\lambda \) that maximize \(H \). Then

\[
0 = \frac{\partial H}{\partial x} = H_x = f_x + \lambda g_x = 0 \quad \text{Solve these three eqs. for } x, y, \lambda.
\]

\[
0 = H_y = f_y + \lambda g_y = 0
\]

\[
0 = H_\lambda = g - c = 0
\]

Why does this work? Well, one could solve for the curve \(y(x) \) that keeps

\[
g(x, y(x)) = c.
\]

Then one can maximize \(f(x, y(x)) \) by setting its derivative equal to zero:

\[
0 = f_x + y' f_y.
\]

To find \(y' \), one sets

\[
0 = g_x + y' g_y, \text{ which gives } y' = -\frac{g_x}{g_y},
\]
So,

\[0 = f_x + \frac{g_x}{g_y} f_y \]

\[0 = f_x - \frac{f_y}{g_y} g_x \]

\[\lambda = -\frac{f_y}{g_y} \]

and

\[0 = f_y + \frac{1}{g_y} f_x \]

\[0 = f_y - \frac{g_y f_x}{g_x} = f_y - \frac{f_x}{g_x} g_x \]

\[\lambda = -\frac{f_x}{g_x} \]

So,

\[0 = f_x - \frac{f_y}{g_y} g_x \]

\[0 = f_y - \frac{f_x}{g_x} g_x \]

And the two equations for \(\lambda \) are the same because

\[0 = f_x - \frac{g_x}{g_y} f_y \text{ which means } \frac{f_x}{g_y} = \frac{f_y}{g_x} = -\lambda. \]

Suppose \(\rho = \Sigma \rho_n \mid n \rangle \langle n \mid \) is a density operator. Then \(\langle 1 \rangle = tr(p F) \)
and \(I = \langle i \rangle = \lambda p_i \), \(\langle H \rangle = \lambda p_i H_i \).

Now \(S = -k \lambda (p \log p) \). So let's maximize \(S \) subject to the conditions \(I = \lambda p \) and \(E = \langle H \rangle \).

So we maximize

\[
Z(p, \lambda, \mu) = S + \lambda (E - \langle H \rangle) + \mu (1 - \langle i \rangle)
\]

\[
= -k \lambda (p \log p) + \lambda (E - \lambda p_i H_i) + \mu (1 - \lambda \lambda p)
\]

We suppose \(\langle n \rangle = \Sigma n m' \).

\[
H \langle n \rangle = E \langle m \rangle . \quad \text{So}
\]

\[
Z(p, \lambda, \mu) = -k \sum p_m \log p_m + \lambda (E - \sum p_m E_m) + \mu (1 - \sum p_m)
\]

\[
0 = \frac{\partial Z}{\partial p_m} = -k \log p_m - \lambda E_m - \mu , \quad \text{so}
\]

\[
\log p_m = \frac{-\lambda E_m - \mu}{k}
\]

\[
p_m = \frac{e^{-\lambda E_m / k}}{\sum e^{-\lambda E_m / k}}
\]

Choose \(\mu \) by setting \(p_m = \frac{e^{-\lambda E_m / k}}{\sum e^{-\lambda E_m / k}} \).

Choose \(\lambda = \frac{1}{T} \)

by the rule \(\sum p_m E_m = E \).
Then

\[p_n = \frac{e^{-\frac{E_n}{kT}}}{\sum e^{-\frac{E_n}{kT}}} \]

is the quantum density operator that maximize entropy for a fixed mean value \(E \) of the energy while conserving probability \(\sum p = 1 \).
Chaos

Henri Poincaré (~1900) studied the three-body problem and found very complicated (chaotic) orbits.

There seem to be four kinds of classical motion:
1. periodic
2. steady (or damped motion that stops)
3. quasi-periodic (mixture of periodic motions, etc.)
4. chaotic

In a system after a transient period.

Examples:

\[x'' + v x + x^3 - x = g \sin \omega t \]

Ex. 8 theory

give something like
Dripping faucet

Data are t_1, t_2, t_3, \ldots

At low flow rate, $\Delta t_n = t_{n+1} - t_n$ is constant, all Δt_n are equal.

At a slightly higher rate, the dips come with gaps that alternate $\Delta t_1, \Delta t_2, \Delta t_3, \Delta t_4, \ldots$ so that $\Delta t_{n+2} = \Delta t_n$. This is a period-two sequence.

At still higher flow rates, no regularity is apparent.
Chaotic Rayleigh–Bénard convection occurs when a fluid is placed in a gravitational field between two plates that are kept at constant temperatures with the lower plate hotter by Δt above the chaotic threshold. For lower Δt, the motion is steady convective cellular flow.

Dynamical Systems

$$\dot{x}_i = F_i(x) \quad \text{and} \quad \dot{x} = F(x),$$

$$\dot{x}(t) = F(x(t))$$

The crossings of a suitably oriented plane give rise to a map

$$x_{n+1} = M(x_n)$$

in some lower dimensions.
In the system

\[\dot{x} = F(x) \]

chaos can occur only if the dimension \(N \) of the vector \(x \) exceeds 2

\[N > 3. \]

For the invertible map

\[x_{n+1} = M(x_n) \Rightarrow x_n = M^{-1}(x_{n+1}) \]

chaos occurs only if \(N > 2. \)

If the map is not invertible, then chaos can occur even if \(N = 1. \) An example is

\[x_{n+1} = r x_n (1 - x_n) \]

which is not invertible and does exhibit chaos in increasingly striking forms as \(r \) exceeds a number slightly greater than \(R \approx 3.57. \)

By \(r = 4, \) the map is totally chaotic.
Here $x_1 = x_2 = 0$ is an attractor.

The limit cycle occurs in the van der Pol equation

$$\ddot{y} + (\eta^2 - \gamma) \dot{y} + \omega^2 y = 0$$

which may be written as the first-order system

$$\begin{align*}
x_1 &= \dot{y} \\
x_2 &= y
\end{align*}$$

$$\begin{align*}
\dot{x}_1 &= -\omega^2 x_2 - (x_2^2 - \gamma) x_1 \\
\dot{x}_2 &= x_1
\end{align*}$$

The van der Pol equation was introduced in the 1920s to describe a vacuum-tube oscillator circuit.
Fractals

Fractal sets don't have dimensions that are natural numbers. To compute their dimensions one needs a definition of dimension.

The box-counting dimension is as follows: cover the set with line segments, squares, cubes, etc., of edge length \(\epsilon \). Count how many you need as \(\epsilon \to 0 \). Call the number of boxes \(N(\epsilon) \). Then

\[
D_0 = \lim_{\epsilon \to 0} \frac{\ln N(\epsilon)}{\ln (1/\epsilon)}.
\]

Cantor set: 0 \(\overline{0} \)

\[
E_n = \left(\frac{1}{3}\right)^n \quad \text{need} \quad N(\epsilon) = 2^n \quad \text{boxes}.
\]

So

\[
D_0 = \lim_{n \to \infty} \frac{\ln 2^n}{\ln 3^n} = \lim_{n \to \infty} \frac{\ln 2}{\ln 3} = 0.63.
\]

Attractors of fractal dimension are strange.