1st-order PDEQ's.

\[\frac{dy}{dx} = f(x, y) = -\frac{P(x, y)}{Q(x, y)} \]

\[P \, dx + Q \, dy = 0 \]

This system is \underline{exact} if for some \(\phi(x, y) \)

\[d \phi(x, y) = P(x, y) \, dx + Q(x, y) \, dy \]

In this case,

\[P(x, y) = \frac{\partial \phi}{\partial x}, \quad Q(x, y) = \frac{\partial \phi}{\partial y}, \]

and so

\[\frac{\partial P(x, y)}{\partial y} = \frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial x} = \frac{\partial Q(x, y)}{\partial x}. \]

When \(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 0 \), the system is trivially exact, and

\[0 = \int_{x_0}^{x} P(x) \, dx + \int_{y_0}^{y} Q(y) \, dy \]

gives the solution \(y(x) \).
With great care, one might find an integrating factor \(\alpha(x,y) \) so that

\[
\alpha(x,y) P(x,y) \, dx + \alpha(x,y) Q(x,y) \, dy = 0
\]

is exact, that is, so that

\[
d\phi(x,y) = \alpha P \, dx + \alpha Q \, dy.
\]

\[
\alpha P = \frac{\partial \phi}{\partial x} \\
\alpha Q = \frac{\partial \phi}{\partial y}
\]

\[
\frac{\partial P}{\partial y} = \frac{\partial^2 \phi}{\partial y \partial x} = \frac{\partial Q}{\partial x}.
\]

Boyle's law arises from the exact

\[
0 = \frac{dV}{V} + \frac{dP}{P}
\]

which we integrate to

\[
0 = \ln \frac{V}{V_0} + \ln \frac{P}{P_0} = \ln \frac{VP}{V_0P_0}
\]

or

\[
VP = V_0 P_0 = k.
\]
But the equation

$$xdg - y dx = 0$$

is not exact.

$$\alpha(x,y) = x^2$$ is an integrating factor.

$$\frac{xdg}{x^2} - \frac{y dx}{x^2} = \frac{dy}{x} - \frac{y}{x^2} dx$$

because now $$P = -y/x^2$$ and $$Q = 1/x$$ so

$$\frac{\partial P}{\partial y} = -\frac{1}{x^2} = \frac{\partial Q}{\partial x},$$ which shows $$\alpha$$ is an integrating factor.

$$0 = \frac{y}{x^2} dx - \frac{dy}{x}$$ is exact. To solve it, we write

$$\frac{dy}{y} = \frac{dx}{x}$$

$$\ln \frac{y}{y_0} = \ln \frac{x}{x_0} \quad 0 = \ln \frac{y}{y_0} \frac{x}{x_0}$$

so

$$\frac{y}{x} = k \quad y = kx.$$

Note that $$\alpha(x,y) = 1/(xy)$$ is another integrating factor for $$xdy - y dx = 0.$$
A function \(f(x, y, z) \) is homogeneous of degree \(n \) if
\[
f(tx, ty, tz) = t^n f(x, y, z),
\]
For instance, \(z^2 \ln(x/y) \) is homogeneous of degree 2 since
\[
(tz)^2 \ln\left(\frac{tx}{ty}\right) = t^2 z^2 \ln\left(\frac{x}{y}\right).
\]
If \(f \) is homogeneous of degree \(n \), then
\[
f(tx, ty, tz) = t^n f(x, y, z)
\]
so
\[
\frac{df(tx, ty, tz)}{dt} = x \frac{df}{dx} + y \frac{df}{dy} + z \frac{df}{dz} = n t^{n-1} f(x, y, z)
\]
Thus \(t = 1 \)
\[
x \frac{df}{dx} + y \frac{df}{dy} + z \frac{df}{dz} = n f(x, y, z),
\]
This is one of Euler's theorems.
Suppose \(P(x, y) \) and \(Q(x, y) \) are homogeneous of degree \(m \) and \(n \). Then in
\[
0 = P(x, y) \, dx + Q(x, y) \, dy,
\]
\text{Let } y = u x, \text{ so } dy = x du \quad \text{and}

0 = P(x, xu) \, dx + Q(x, xu) \, du

0 = x^n \, P(1, u) \, dx + x^{n+1} \, Q(1, u) \, du

0 = x^{n-m-1} \, dx + \frac{Q(1, u)}{P(1, u)} \, du

\text{Now}

\frac{1}{u} \frac{d}{dx} x^{n-m-1} = 0 = \frac{d}{dx} \left(\frac{Q(1, u)}{P(1, u)} \right)

\text{so the PDE is exact in } x \text{ and } u.

0 = x^{n-m} \int_{x_0}^{x} + \int_{u_0}^{u} \frac{Q(1, u')}{P(1, u')} \, du'

\text{gives } u(x).

A PDE that is separable and separated is exact, but an exact PDE is not always separable. Thus

\text{Thus } 0 = P(x) \, dx + Q(y) \, dy \text{ is separable and separated, and } \frac{\partial P}{\partial y} = 0 = \frac{\partial Q}{\partial x}. \text{ So it's exact.}

But } 0 = x P(x) + x Q(y) \text{ may be exact without being separable.
We may reduce the homogeneous PDE

\[a(x,y) \frac{\partial \psi}{\partial x} + b(x,y) \frac{\partial \psi}{\partial y} = 0 \]

to an ODE. Let \(\psi = F(\xi) = F(\xi(x,y)) \). Then

\[\frac{\partial \psi}{\partial x} = \frac{\partial \xi}{\partial x} F' \quad \text{and} \quad \frac{\partial \psi}{\partial y} = \frac{\partial \xi}{\partial y} F' \quad \text{so} \]

\[0 = a \frac{\partial \xi}{\partial x} F' + b \frac{\partial \xi}{\partial y} F' \quad \text{is solved for} \quad \psi \]

\[0 = a \frac{\partial \xi}{\partial x} + b \frac{\partial \xi}{\partial y} \quad \text{which is a b ad as the original equation. But we may choose} \quad \xi(x,y) \]

to satisfy \(\xi = C \), a constant, so that

\[d\xi = \frac{\partial \xi}{\partial x} dx + \frac{\partial \xi}{\partial y} dy = 0 \]

whence

\[\frac{\partial \xi}{\partial y} = - \frac{\partial \xi}{\partial x} \frac{dx}{dy} \quad \text{and so} \quad 0 \]

\[0 = a \frac{\partial \xi}{\partial x} - b \frac{\partial \xi}{\partial y} \frac{dx}{dy} = ady - b dx \]

which is the ODE

\[\frac{dy}{dx} = \frac{b(x,y)}{a(x,y)} \]
For the inhomogeneous PDE

$$a \psi_x + b \psi_y + c \psi = 0,$$

where $\psi_x = \psi/\partial x$ and $\psi_y = \psi/\partial y$,
we set $\psi = \Phi(x,y) F(\xi)$ so that

$$F(a \xi_x + b \xi_y + c \xi) + \xi F'(a \xi_x + b \xi_y) = 0$$

Now if we can figure out a solution ξ of the original equation

$$0 = a \xi_x + b \xi_y + c \xi,$$

as well as $\xi = a \xi_x + b \xi_y$ with $\xi = C$
and so

$$\frac{d\xi}{dx} = \frac{b(\xi,y)}{a(\xi,y)}.$$

Then the product $\psi = DF$ is a more general solution of $a \psi_x + b \psi_y + c \psi = 0$.
Linear 1st-order ODE's.

\[\frac{dy}{dx} + p(x) y = f(x) = y_x + py, \]

where \(y_x = \frac{dy}{dx}. \)

If \(f(x) = 0, \) then this ODE is homogeneous in \(y. \) The inhomogeneity \(f(x) \) is a source term. The equation \(y_x + py = 0 \)

is linear in \(y \) and \(y_x. \) There are no terms like \(y^2 \) or \(y^3 \) or \(y^n. \)

In this case, there is a general way to find an integrating factor \(\alpha(x). \)

\[\alpha(x) y_x + \alpha(x) p(x) y = \alpha(x) f(x) \]

such that

\[\frac{d(\alpha y)}{dx} = \alpha y_x + \alpha p y. \]

\[\alpha y + \alpha y_x = \alpha p y \rightarrow \]

\[\frac{\alpha y}{\alpha} = p \]

so we need
So
\[p(x) = \left[\ln \alpha(x) \right]_x = \frac{d \ln \alpha}{dx} \]

where
\[\ln \alpha(x) = \int_{x_0}^{x} p(x') \]

\[\alpha = e^{\int_{x_0}^{x} p(x') \}

So now
\[\frac{d}{dx} \left[e^{g(x)} \right] = \alpha(x) \psi(x) \]

\[e^{g(x)} \left[\int_{x_0}^{x} \alpha(x') \psi(x') \right] = \int_{x_0}^{x} \alpha(x') \psi(x') \phi(x') \]

\[g(x) e^{\int_{x_0}^{x} \alpha(x) \psi(x) \}

\[g(x) = e^{\int_{x_0}^{x} \alpha(x) \psi(x) \} + C} \]

is the general solution.

Note that
\[\int_{x_0}^{x} p(x') \]

\[g_1(x) = C e^{\int_{x_0}^{x} p(x') \}
is the general solution of the homogeneous ODE
\[0 = y_x + py \quad \text{or} \quad \frac{y_x}{y} = -p \]

while
\[y_2(x) = e^{\int px \, dx}, \quad \int px \, dx = \int px \, e^{q x} \]
is a particular solution of the inhomogeneous ODE
\[5x + py = f. \]

This is important.

Example. - RL circuit
\[L \frac{dI}{dt} + RI = V \]

\[\frac{dI}{dt} + \frac{R}{L} I = \frac{V}{L}, \quad p = \frac{R}{L}, \quad q = \frac{V}{L} \]

\[\alpha(t) = e^{\int dt' R(t')/L(t')} \]

\[I(t) = e^{\int dt' R(t')/L(t')} \]

\[x \left[\int dt' e^{\frac{V(t')}{L(t')}} + c \right]. \]
If \(R \) is a constant and \(L \) is another constant, then

\[
I(t) = e^{-\frac{tR}{L}} \left[\int dt' \, e^{\frac{t'R}{L}} \frac{V(t')}{L} + c \right],
\]

If \(V(t) = V_0 \), another constant, then

\[
I(t) = e^{-\frac{tR}{L}} \left[\frac{V_0}{L} \int dt' \, e^{\frac{t'R}{L}} + c \right]
\]

\[
= e^{-\frac{tR}{L}} \left[\frac{V_0}{L} \frac{L}{R} e^{\frac{tR}{L}} + c \right]
\]

\[
= e^{-\frac{tR}{L}} \left[\frac{V_0}{R} + c \right] e^{\frac{tR}{L}}
\]

If \(I(0) = 0 \), then \(c = -\frac{V_0}{R} \) and

\[
I(t) = \frac{V_0}{R} \left(1 - e^{-\frac{tR}{L}} \right).
\]
The general ODE

\[\frac{dy}{dx} = f(x, y) \]

may be formally integrated to

\[y(x) = y(x_0) + \int_{x_0}^{x} f(x', y(x')) \, dx' \]

which invites the Neumann series solution

\[y_0(x) = y(x_0) \]

\[y_1(x) = y_0(x_0) + \int_{x_0}^{x} f(x', y_0(x')) \, dx' \]

\[= y(x_0) + \int_{x_0}^{x} f(x', y(x')) \, dx' \]

\[y_2(x) = y_1(x_0) + \int_{x_0}^{x} f(x', y_1(x')) \, dx' \]

\[= y(x_0) + \int_{x_0}^{x} f(x', y(x')) + \int_{x_0}^{x} f(x'', y(x')) \, dx'' \]

This is called Picard's method of successive approximations.
\((s^2 + 1) f' + sf = 0\)

\[
\frac{f'}{f} = -\frac{s}{s^2 + 1}
\]

\[
d \ln f = -\frac{1}{2} \frac{2s}{s^2 + 1} = -\frac{1}{2} d \ln (s^2 + 1)
\]

\[
\frac{\ln f}{f_0} = -\frac{1}{2} \ln \frac{s^2 + 1}{s_0^2 + 1}
\]

\[
\int_0^\infty f'/f_0 = e^{-\frac{1}{2}} \left[e^{\ln \frac{s^2 + 1}{s_0^2 + 1}} \right]^{\frac{1}{2}}
\]

\[
\frac{f}{f_0} = e^{-\frac{1}{2} \ln \frac{s^2 + 1}{s_0^2 + 1}} = \left(\frac{s^2 + 1}{s_0^2 + 1} \right)^{-\frac{1}{2}} = \sqrt{\frac{s_0^2 + 1}{s^2 + 1}}
\]

\[
f(s) = \frac{c}{\sqrt{s^2 + 1}}
\]

Check:

\[
f' = -\frac{1}{2} c (s^2 + 1)^{-3/2} \sqrt{s} = -\frac{c s}{(s^2 + 1)^{3/2}}
\]

\[
\frac{f'}{f} = -\frac{c s}{(s^2 + 1)^{3/2}} \frac{(s^2 + 1)^{1/2}}{c} = -\frac{s}{s^2 + 1}
\]
Problem 8.2.12 Jumper's equation

\[\frac{m \, dv}{dt} = mg - bv \]

\[\frac{dv}{dt} + \frac{b}{m} v = g \quad \text{So} \quad p = \frac{b}{m}, \quad q = g \quad \text{both constants,} \]

\[v(t) = e^{-\frac{b}{m} t} \left[\int_{t}^{t'} e^{\frac{b}{m} t'} dt' + c \right] \]

\[= e^{-\frac{bt}{m}} \left[mg \frac{e^{\frac{bt}{m}}}{b} + c \right] \]

\[= mg/b + ce^{-\frac{bt}{m}} \]

If \(v(0) = 0 \), then \(c = -mg/b \) so that

\[v(t) = mg \left(1 - e^{-\frac{bt}{m}} \right) \]

The limiting speed is \(\frac{mg}{b} \). Check

\[mu = \frac{m}{b} \frac{\sqrt{2}}{b} e^{-bt/m} = mg e^{-bt/m} - \frac{mg}{b} \frac{1 - e^{-bt/m}}{b} \]

\[= mg e^{-bt/m} \]
Review of Separation of Variables

The Helmholtz equation in cartesian coordinates:

$$0 = (\Delta + k^2) \psi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k^2 \right) \psi$$

We let

$$\psi(x, y, z) = X(x) Y(y) Z(z)$$

with

$$X'' = -k_x^2 X, \quad Y'' = -k_y^2 Y, \quad Z'' = -k_z^2 Z$$

and

$$-k^2 = k_x^2 + k_y^2 + k_z^2$$

Example

$$X = \cos(k_x x)$$
$$Y = \sin(k_y y)$$
$$Z = \cos(k_z z)$$

with

$$k_x^2 + k_y^2 + k_z^2 = k^2$$

Pages 106-139 contain my notes on the separation of variables.
Singular Points

Consider the 2nd-order ODE

\[y'' = f(x, y, y'). \]

Suppose \(y'' = f(x_0, y, y') \) is finite for all finite \(y \) and \(y' \). Then \(x_0 \) is a regular point of the ODE.

But if \(y'' = f(x_0, y, y') \) diverges for any pair of finite values \((y, y') \), then \(x_0 \) is a singular point of the ODE.

If the ODE is of the form

\[y'' + P(x) y' + Q(x) y = 0, \]

and both \(P(x_0) \) and \(Q(x_0) \) are finite, then \(x_0 \) is a regular point of the ODE. But if \(P(x_0) \) or \(Q(x_0) \) or both are infinite, then \(x_0 \) is a singular point.

Not all singular points are equally bad.

If \(P(x) \) and \(Q(x) \) diverge as \(x \to x_0 \), but

\[(x-x_0) P(x) \] and \((x-x_0)^2 Q(x) \) remain finite as \(x \to x_0 \), then \(x_0 \) is a regular singular point.
Regular singular points are also called nonessential singular points.

But if either \((x-x_0)P(x)\) or \((x-x_0)^2Q(x)\)
diverges as \(x \to x_0\), then \(x_0\) is an irregular singular point or an essential singularity.

To analyze the point at infinity, we set

\[z = \frac{1}{x} \quad \text{and look at} \quad z = 0. \]

\[y' = \frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx} = \frac{d^2z}{dx^2} \frac{dy}{dz} = \frac{d^2z}{dx^2} y' \]

\[= -\frac{1}{x^2} y' = -z^2 y' \]

\[y'' = \frac{d^2y}{dx^2} = \frac{d^2z}{dx^2} \frac{dy}{dz} = -z^2 \frac{d}{dz} (-z^2 y') \]

\[= z^4 y'' + 2 z^3 y' \quad \text{so} \]

\[0 = y'' + P(z^{-1}) y' + Q(z^{-1}) y \quad \text{becomes} \]

\[0 = z^4 y'' + [2z^3 - z^2 P(z^{-1})] y' + Q(z^{-1}) y \quad \text{or} \]

\[0 = y'' + \left(\frac{2z - P}{z^2} \right) y' + \frac{Q}{z^2} y. \]
If \(\frac{z^2 - P(z')}{z^2} \) and \(\frac{Q(z')}{z^4} \) remain finite as \(z \to 0 \), then \(x = \infty \) is a regular point of the ODE.

If \(\frac{z^2 - P(z')}{z^2} \) and \(\frac{Q(z')}{z^4} \) remain finite as \(z \to 0 \), then \(x = \infty \) is a regular singular point. Otherwise \(x < \infty \) is an irregular singular point or an essential singularity.

Problem 8.4.1 Legendre's equation is

\[
(1-x^2) y'' - 2x y' + \ell(\ell+1) y = 0
\]

or

\[
y'' - \frac{2x}{1-x^2} y' + \frac{\ell(\ell+1)}{1-x^2} y = 0
\]

Clearly \(x = \pm 1 \) are singular points. But

\[-(x-1) \frac{2x}{1-x^2} = \frac{2x}{1+x} \to 1 \text{ as } x \to 1\]

and

\[
(x-1)^2 \frac{1}{(1-x^2)} = \frac{x-1}{(x+1)} \to 0 \text{ as } x \to 1
\]

So \(x = 1 \) is regular.
\[- \left(\frac{x + 1}{1 - x^2} \right) \frac{2x}{1 - x} = \frac{2x}{1 - x} \rightarrow -1 \quad \text{as} \quad x \rightarrow -1 \]

\[\left(\frac{x + 1}{1 - x^2} \right) = \frac{x + 1}{1 - x} \rightarrow 0 \quad \text{as} \quad x \rightarrow -1 \]

So \(x_0 = -1 \) is regular.

\[\left(\frac{2z + \frac{2z^{-1}}{1 - z^{-2}}} {1 - z^{-2}} \right) \frac{1}{z^2} = \frac{z}{z} + \frac{z}{z^2 - 1} \]

diverges as \(z \rightarrow 0 \), so \(x_0 = 0 \) is a singular point. But

\[\frac{2z}{z^2 - 1} \rightarrow 0 \quad \text{as} \quad z \rightarrow 0 \]

and

\[\left(\frac{1}{1 - z^{-2}} \right) \frac{1}{z^2} = \frac{1}{z^2 - 1} \rightarrow -1 \quad \text{as} \quad z \rightarrow 0 \]

So \(x_0 = 0 \) is a regular singular point, like \(x_0 = \pm 1 \).
Series Solutions - Frobenius's Method

Consider the general linear, 2nd-order, homogeneous ODE

\[y'' + P(x)y' + Q(x)y = 0. \]

We try

\[y(x) = x^r \sum_{k=0}^{\infty} a_k x^k \quad a_0 \neq 0. \]

Since \(P(x) \) and \(Q(x) \) contribute powers of \(x \), this gets messy fast if we try to stay general. So we look at

\[y'' + w^2 y = 0. \]

\[y = \sum_{k=0}^{\infty} a_k x^k, \]
\[y' = \sum_{k=0}^{\infty} (k+1) a_k x^k, \]
\[y'' = \sum_{k=0}^{\infty} (k+1)(k+2) a_k x^{k+2}. \]

So

\[\sum_{k=0}^{\infty} (k+1)(k+2) a_k x^{k+2} + w^2 \sum_{k=0}^{\infty} a_k x^k = 0. \]

The most singular term at \(x=0 \) is

\[a_0 k(k-1) x^k, \]

and so

\[k(k-1) = 0. \]
This is called the indicial equation.

So \(k = 0 \) or \(k = 1 \).

Let \(j = k - 2 \). Then the ODE is

\[
\sum_{j=-2}^{\infty} a_j (k+j+2)(k+j+1) x^{k+j} + w^2 \sum_{j=0}^{\infty} a_j x^{k+j} = 0
\]

So

\[
a_{j+2} (k+j+2)(k+j+1) + w^2 a_j = 0 \quad or
\]

\[
a_{j+2} = -\frac{w^2}{(k+j+2)(k+j+1)} a_j
\]

which is a two-term recurrence relation.

Case \(k = 0 \): Then the worst term for \(j = -2 \)

\[
a_0 (0)(-1)(-1) x^{-2} = 0
\]

and the next worst term is for \(j = -1 \)

\[
a_1 (0-1+2)(0-1+1) x^{-1} = 0
\]

So \(a_1 \) is arbitrary. We set \(a_1 = 0 \) when

\[
0 = a_3 = a_5 = a_7 \ldots \quad a_{2n+1} = 0
\]
Then for $j = 0$ and $k = 0$, $a_{j+2} = -\frac{\omega^2}{(j+2)(j+1)} a_j$

and so

$$a_2 = -\frac{\omega^2}{2 \cdot 1} \quad a_0 = -\frac{\omega^2}{2} a_0$$

$j = 2$

$$a_4 = -\frac{\omega^2}{4 \cdot 3} \quad a_2 = \frac{\omega^4}{4!} a_0$$

$j = 4$

$$a_6 = -\frac{\omega^2}{6 \cdot 5} a_4 = -\frac{\omega^6}{6!} a_0$$

$$a_{2n} = (-1)^n a_0 \frac{\omega^{2n}}{(2n)!}$$

$$g(x) = a_0 \sum (-1)^n \frac{\omega^{2n}}{(2n)!} = a_0 \cos \omega x.$$

Case $k = 1$

$$a_{j+2} = -\frac{\omega^2}{(j+3)(j+2)} a_j$$

The worst term is

$$a_0 (1-2+2)(1-2+1)x^{-1} = 0.$$

The other problematic term

$$a_1 (1-1+2)(1-1+1) x^0 \text{ must vanish.}$$
So we must set $a_1 = 0$ if $k = 1$.

So

$$a_{2n+1} = 0 \quad \text{again},$$

And

$$j = 1 \quad a_2 = -\frac{\omega^2}{3!} a_0 = -\frac{\omega^2}{3!} a_0$$

$$j = 2 \quad a_4 = -\frac{\omega^2}{5!} a_2 = \frac{\omega^2}{5!} a_0$$

$$j = 4 \quad a_6 = -\frac{\omega^2}{7!} a_4 = -\frac{\omega^4}{7!} a_0 \quad \text{etc.}$$

$$a_{2n} = (-1)^n \frac{\omega^{2n}}{(2n+1)!} a_0$$

So for $k = 1$

$$y(x) = \sum_{n=0}^{8} a_{2n} x^{1+2n}$$

$$= \frac{a_0}{\omega} \sum_{n=0}^{8} (-1)^n \frac{\omega^{2n}}{(2n+1)!} x^{2n+1}$$

$$= \frac{a_0}{\omega} \sum_{n=0}^{8} (-1)^n \frac{(\omega x)^{2n+1}}{(2n+1)!}$$

$$= \frac{a_0}{\omega} \sin \omega x.$$
So we got two independent solutions for the ODE
\[y'' + wy = 0. \]

Some ODE's require us to work harder for two solutions.

Sometimes one expands about another point
\[y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k. \]

Suppose we write the ODE as
\[0 = L(x) y(x) = y''(x) + P(x) y'(x) + Q(x) y(x), \]
by which we mean
\[L(x) = \frac{d^2}{dx^2} + P(x) \frac{d}{dx} + Q(x). \]

Then
\[L(-x) = \frac{d^2}{dx^2} - P(-x) \frac{d}{dx} + Q(-x). \]

If \(L(-x) = \pm L(x) \), then
\[L(x) y(x) = 0 \] implies \[L(-x) y(-x) = 0. \]
and \(L(-x) = i L(x) \) further implies

\[
\frac{1}{2} L(x) y(-x) = 0 \quad \text{on}
\]

\[
L(x) y(-x) = 0.
\]

In this case, both \(y(x) \) and \(y(-x) \) is a solution of

\[
L(x) y(x) = 0
\]

and we may resolve \(y(x) \) into even and odd solutions

\[
y(x) = \frac{1}{2} \left[y(x) + y(-x) \right] + \frac{1}{2} \left[y(x) - y(-x) \right]
\]

\[
= y_e(x) + y_o(x),
\]

\[
L_e(x) = \frac{d}{dx} \left[\frac{d}{dx} - \frac{2x}{1-x^2} \frac{d}{dx} + \frac{d^3}{dx^3} \right] = L_e(-x)
\]

\[
L_o(x) = \frac{d}{dx} \left[\frac{d}{dx} - \frac{x}{1-x^2} \frac{d}{dx} + \frac{m^2}{1-x^2} \right] = L_o(-x)
\]

\[
L_b(x) = \frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx} + \frac{x^2 - m^2}{x^2} = L_b(-x)
\]

\[
L_n(x) = \frac{d}{dx} + w^2 = L_n(-x)
\]

These are all even operators.
What can go wrong? Try Bessel's equation

\[0 = y'' + \frac{1}{x} y' + \left(\frac{x^2 - n^2}{x^2} \right) y = x^2 y'' + xy' + (x^2 n^2) y \]

Let

\[y(x) = \sum_{k=0}^{\infty} a_k x^k \]

\[0 = \sum_{k=0}^{\infty} a_k \frac{(k+1)(k+2)}{x^k} x^{k+2} + \sum_{k=0}^{\infty} a_2 (k+1) x^{k+3} \]

\[+ \sum_{k=0}^{\infty} a_k x^{k+2} - \sum_{k=0}^{\infty} a_k n^2 x^{k+4} \quad (BE) \]

Set \(k = 0 \) to isolate the terms with \(x^k \):

\[a_0 \left[k(k-1) + k - n^2 \right] = 0 \]

So, \(k^2 = n^2 \) is the indicial equation.

The \(x^{k+2} \) terms are

\[a_k \left[(k+1)k + k+1 - n^2 \right] = a_k (k+1+n)(k+1-n) \]

Now if \(k = n \), these terms don't vanish unless \(k = m = -1/2 \) or \(k = -n = 1/2 \). In all other cases, we set \(a_1 = 0 \).

Set \(k = m \). The terms with \(x^{m+1} \) in \((BE) \) are

\[a_j \left[(m+j)(m+j-1) + m + j - n^2 \right] + a_{j-2} = 0 \]

\[a_j \left[j(j-1) + mj + m(j-1) + m + j \right] + a_{j-2} = 0 \]
\[a_j \left[j^2 + 2n_j \right] = -a_{j-2} \]

\[a_j j(j+2n) = -a_{j-2} \]

\[a_{j+2} = -\frac{a_j}{(j+2)(j+2+2n)} \]

\[a_2 = -\frac{a_0}{2(2n+2)} = -\frac{a_0 m!}{2^2 2! (n+1)!} \]

\[a_4 = -\frac{a_2}{4(2n+4)} = \frac{a_0}{4 \cdot 2 (2n+4)(2n+2)} \]

\[1 \cdot j \cdot 2 \cdot 3 = \frac{a_0 m!}{a_2 \cdot 2 \cdot 2! (n+2)!} \]

\[a_6 = -\frac{a_4}{6(2n+6)} = -\frac{a_0 m!}{2^6 3! (n+3)!} \]

So,

\[a_{2p} = (-1)^p \frac{a_0 m!}{2^p p! (m+p)!} \]

\[\gamma(x) = a_0 \sum_{j=0}^{\infty} \frac{(-1)^j m! x^{n+2j}}{2^j j! (m+j)!} \]
\[y(x) = a_0 x^n \sum_{j=0}^{\infty} \frac{(-1)^j}{j! (n+j)!} \left(\frac{x}{2} \right)^{n+j} \]

\[= a_0 x^n \sum_{j=0}^{\infty} J_m(x) \]

Note that \[J_n(-x) = (-1)^n J_n(x) \]

If \(k = -n \) and \(n \) is not an integer, then we may generate a second solution \(J_n(x) \).

Now:

\[a_j \left[(j-n)(j-1-n)-n+j-n^2 \right] + a_{j-2} = 0 \]

\[a_j \left[j(j+1)-n(j+1)-n+j \right] + a_{j-2} = 0 \]

\[a_j \left(j^2-2nj \right) + a_{j-2} = 0 \]

\[a_j j \left(j-2n \right) + a_{j-2} = 0 \]

\[a_{j+2} = -\frac{a_j}{(j+2)(j+2-2n)} \]

Now if \(n \geq 0 \) is a positive integer and \(j \) is an even positive integer, there can be trouble when \(j+2 = 2n \).
In this case, one sets

$$J_\omega (x) = (\omega)^\omega \int_0^x y(t) dt$$

and we do not get a second solution.

But what if we expand about a singular point? Consider

$$x^2 y'' = 6y$$

and by

$$y(x) = \sum_{\lambda=0}^{\infty} a_\lambda x^{k+\lambda}$$

$$\sum a_\lambda (k+\lambda)(k+\lambda-1) x^{k+\lambda} = 6 \sum a_\lambda x^{k+\lambda}$$

$$\sum_{\lambda=0}^{\infty} a_\lambda \left[(k+\lambda)(k+\lambda-1) - 6 \right] x^{k+\lambda} = 0$$

We must have

$$(k+\lambda)(k+\lambda-1) = 6$$

for all λ. Impossible. Try for $\lambda = 0$

$$k(k-1) = 6 \quad 0 = k^2 - k - 6$$

$$k = \frac{1 \pm \sqrt{1 + 24}}{2} = \frac{1 \pm 5}{2} = 3 \text{ or } -2.$$

So we get two solutions

$$y = x^3 \quad \text{and} \quad y = x^{-2}.$$

Here $x = 0$ is a regular singular point of

$$0 = y'' - \frac{6y}{x^2}.$$
Consider the ODE

\[y'' - \frac{6}{x^3} y = 0. \]

Since \(x^2 (\frac{6}{x^3}) \) diverges as \(x \to 0 \), the point \(x = 0 \) is an essential singularity of this ODE.

Let

\[y(x) = \sum_{\lambda = 0}^{\infty} a_\lambda x^{\lambda + 1}. \]

\[x^3 y'' = \sum_{\lambda = 0}^{\infty} (\lambda + 1)(\lambda + 2) a_\lambda x^{\lambda + 3} = \sum_{\lambda = 0}^{\infty} 6 a_\lambda x^{\lambda + 1}. \]

The lowest power of \(x \) is

\[(\lambda + 1)(\lambda + 2) = \lambda^2 + 3\lambda + 2, \]

so the indicial equation is

\[\lambda^2 + 3\lambda + 2 = 0. \]

But by construction, \(a_0 \neq 0 \). So we have no solution at all by this series-expansion method.

For the ODE, the point \(x = 0 \)

\[x^2 y'' + xy' - a^2 y = 0 \]

is a regular singular point.
We try \(y = \sum_{n=0}^{\infty} a_n x^{k+n} \)

\[
\sum x (k+1)(k+2)(k+3) a_k x^{k+1} + (k+1) a_{k+1} x^{k+2} - a_k x^{k+1} = 0
\]

For \(\lambda = 0 \)

\[
k(k-1) + k - a^2 = 0
\]

\[
h^2 = a^2 \quad \text{so} \quad k = \pm a.
\]

But for \(\lambda = 1 \),

\[
[(k+1)k + k+1 - a^2] a_1 = 0
\]

\[
[k^2 + 2k - a^2] a_1 = (2k+1) a_1
\]

\[
= (\pm 1 \pm 2a) a_1 = 0
\]

So \(a_1 = 0 \) unless \(a = \pm 1/2 \).

For \(\lambda = 2 \)

\[
[(k+2)(k+1) + k+2 - a^2] a_2 = 0
\]

\[
= (k^2 + 4k + 4 - a^2) a_2 = 4(k+1) a_2 = 0
\]

So \(a_2 = 0 \) unless \(k = \pm a = -1 \). So apart from special values of \(a \), the only solutions are

\[
y = x^a \quad \text{and} \quad y = x^{-9}.
\]
The ODE

\[x^2 y'' + y' - a^2 y = 0 \]

has \(x=0 \) as an essential singularity. We try

\[y = \sum a_k x^{k+2} \]

\[\sum (k+1)(k+1-1)a_k x^k + (k+2)a_{k+2} x^{k+1} - a^2 a_0 x^k = 0 \]

Now the vanishing of the coefficient of the constant power of \(x \) gives

\[0 = k a_0 x^{-1} \quad \text{or} \quad k = 0 \]

\[\sum [(k+j)(k+j-1)a_j x^{k+j} + (k+j+1)a_{j+1} x^{k+j+1} - a^2 a_j x^{k+j}] = 0 \]

So

\[(k+j)(k+j-1) - a^2] a_j = -(k+j+1) a_{j+1} \]

\[a_{j+1} = a_j \frac{a^2 - j(j-1)}{j+1} \]

So if \(a^2 = j(j-1) \), the series terminates, but for general \(a \)

\[\lim_{j \to \infty} \frac{a_{j+1}}{a_j} = \lim_{j \to \infty} \frac{a}{j} = 0 \]

and the series diverges for all \(x \).
Fuch's Theorem

We always can obtain at least one power-series solution if we expand about a regular point or a regular singular point.

Do we get a second solution too?

1. If the two roots of the indicial equation are equal, we only get one solution.

2. If the two roots differ by a non-integer number, one gets two solutions.

3. If the two roots differ by an integer, the larger of the two roots yields a solution.

If the only set of numbers \(k_1, \ldots, k_n \) for which

\[0 = k_1 y_1(x) + k_2 y_2(x) + \cdots + k_n y_n(x) \]

for some range of \(x \) is \(k_i = 0 \), for \(i = 1, 2, \ldots, m \), then the functions \(y_1, y_2, \ldots, y_n \) are linearly independent. Otherwise, the \(y_i \) are linearly dependent.

If \(y_1, y_2, \ldots, y_n \) are linearly dependent, then for some \(k_1, k_i, \ldots k_n \), we have
\[0 = k_1 y_1(x) + k_2 y_2(x) + \ldots + k_n y_n(x) \]

and so

\[0 = k_1 y_1'(x) + k_2 y_2'(x) + \ldots + k_n y_n'(x) \]

and

\[0 = k_1 y_1''(x) + k_2 y_2''(x) + \ldots + k_n y_n''(x) \]

\[\ldots \]

\[0 = k_1 y_1^{(n-1)}(x) + k_2 y_2^{(n-1)}(x) + \ldots + k_n y_n^{(n-1)}(x) \]

So if \(Y \) is the matrix

\[Y_{ij}(x) = y_j^{(i-1)}(x) \]

then \(0 = Y_{ij}(x) k_j \) or \(Y(x) k = 0 \).

So, the determinant \(|Y(x)| = 0 \) must vanish if the \(y_i \) are linearly dependent.

\[W(x) = |Y(x)| \]

is called the Wronskian.

A Second Solution

Consider the ODE

\[y''(x) + P(x) y'(x) + Q(x) y(x) = 0. \]
Suppose that \(y_1(x) \) and \(y_2(x) \) are two linearly independent solutions. Then the Wronskian

\[
W = \begin{vmatrix}
 y_1(x) & y_2(x) \\
 y'_1(x) & y'_2(x)
\end{vmatrix}
\]

\[= y_1 y'_2 - y_2 y'_1 \neq 0.\]

\[
W' = y'_1 y'_2 + y_1 y''_2 - y'_2 y'_1 - y_2 y''_1
\]

\[= y_1 y''_2 - y_2 y''_1\]

must satisfy

\[
W' = y_1 (-Py'_2 - Qy_2) - y_2 (-Py'_1 - Qy_1)
\]

\[
W'(x) = P(x) (y_2 y'_1 - y_1 y'_2) = -P(x) W(x)
\]

So we can integrate the Wronskian

\[
(ln W)' = -P
\]

\[
ln W(x) = - \int_{x}^{\infty} P(x') + C
\]

\[
W(x) = W(a) e^{-\int_{a}^{x} P(x')}
\]

But \(y_2 \frac{d}{dx} \left(\frac{y_2}{y_1} \right) = y_1 y'_2 - y_2 y'_1 = W \)
and so

\[
\frac{d}{dx} \frac{y_2}{y_1} = \frac{W(x)}{y_1^2(x)}
\]

whence

\[
\frac{y_2(x)}{y_1(x)} = \int dx' \frac{W(x')}{y_1^2(x')} + C
\]

or

\[
y_2(x) = y_1(x) \left(\int dx' \frac{W(x')}{y_1^2(x')} + C \right)
\]

\[
= y_1(x) \left(\int dx' \frac{W(x') e^{-\int dx'' P(x'')}}{y_1^2(x')} + C \right)
\]

So given one solution, \(y_1(x) \), one may generate a second solution \(y_2(x) \)

\[
y_2(x) = y_1(x) \int dx' \frac{e^{-\int dx'' P(x'')}}{y_1^2(x')}
\]

apart from additive and multiplicative constants.
An important special case is:

\[P(x) = 0 \]

so that

\[y'' + Q(x)y = 0. \]

In this case,

\[W' = PW = 0 \]

and so the Wronskian \(W \) is a constant

\[W = y_1y_2' - y_1'y_2 = C \]

In this case, the general formula for \(y_2 \) is just

\[y_2(x) = y_1(x) \int \frac{1}{y_1(x')} dx' \]

As long as we expand about a regular point or a regular singular point, we always may use the series method to find \(y_1(x) \). Then we may use the Wronskian formula to get a second solution \(y_2(x) \). One may also generate a second solution \(y_2(x) \) by the series method of pages 538-542 of A&W. So a 2nd-order linear homogeneous ODE gives two linearly independent solutions in general. Two, but not three.
Why not freeing?

Suppose y_i for $i = 1, 2, 3$ are three solutions of the 2d-order linear homogeneous ODE

$$0 = y_i'' + Py_i' + Qy_i.$$

Then the 3d-order Wronskian W

$$W = \begin{vmatrix} y_1 & y_2 & y_3 \\ y'_1 & y'_2 & y'_3 \\ y''_1 & y''_2 & y''_3 \end{vmatrix}$$

$$= \begin{vmatrix} y_1 & y_2 & y_3 \\ y'_1 & y'_2 & y'_3 \\ -Py'_1 - Qy_1 & -Py'_2 - Qy_2 & -Py'_3 - Qy_3 \end{vmatrix} = 0$$

vanishes because the 3d row is a linear combination of the first two rows. So the three solutions must be linearly dependent.
Green's Functions

Example: \[\nabla \cdot \mathbf{E} = 4\pi \rho \quad \mathbf{E} = -\nabla \phi - \frac{1}{c^2} \frac{\partial \mathbf{A}}{\partial t} \]

In Coulomb gauge, \(\nabla \cdot \mathbf{A} = 0 \), so there

\[-\Delta \phi = -\nabla^2 \phi = 4\pi \rho. \]

Suppose we have a Green's function such that

\[-\nabla_i^2 G(x_1, x_2) = \delta(x_1^i - x_2^i) \]

in fact

\[G(x_1, x_2) = G(\mathbf{x}_1 - \mathbf{x}_2) \quad \Rightarrow \]

\[-\nabla^2 G(x^3) = \delta(x^3) \]

Then by Green's theorem with \(\phi(x) \) and \(G(x-x') \)

\[\int (\phi \nabla^2 G - G \nabla^2 \phi) \, d^3 x = \int (\phi \nabla^2 G - G \nabla^2 \phi) \cdot d^3 \sigma \]

And if we assume that \(\phi \) and \(G \) fall off suitably as \(r \to \infty \), and also extend the volume integral over all of space, pushing the surface integral to infinity, then the surface integral vanishes, and we get

\[-\int \phi(x^3) \nabla^2 G(x-x') \, d^3 x = -\int G(x-x') \nabla^2 \phi(x) \, d^3 x \]

\[\int \phi(x^3) S(x-x') \, d^3 x \quad \int G(x-x') 4\pi \rho(x) \, d^3 x \]

\[= \phi(x_1^3) \quad \Phi(x^3) \]
Let $\mathbf{x} \to \mathbf{x}'$ and $\mathbf{x}' \to \mathbf{x}$, we get

$$
\phi(x') = \int G(x', \mathbf{x}) 4\pi \rho(x') \, d^3x',
$$

In fact, since G is defined by

$$
-\nabla^2 G(x_1, x_2) = -\nabla^2 G(x_2, x_1) = \delta^3(x_1, x_2)
$$

$$
= \delta^3(x_2 - x_1) = -\nabla^2 G(x_2 - x_1)
$$

we see that this Green's function is symmetric,

$$
G(x_1, x_2) = G(x_2, x_1).
$$

It is easy to find $G(x')$ such that

$$
-\nabla^2 G(x') = \delta^3(x')
$$

Let

$$
G(x) = \frac{1}{i\mathbf{k} \cdot \mathbf{x} - \mathbf{k}^2}
$$

Then we have

$$
-\nabla^2 G(x') = \int \frac{d^3k}{(2\pi)^3} \frac{e^{i\mathbf{k} \cdot \mathbf{x}}}{k^2} \delta^3(x')
$$

$$
= \int \frac{d^3k}{(2\pi)^3} \frac{e^{i\mathbf{k} \cdot \mathbf{x}}}{k^2} = \delta^3(x')
$$

So

$$
g(k) = \frac{1}{k^2}
$$

and

$$
G(x') = \int \frac{d^3k}{(2\pi)^3} \frac{e^{i\mathbf{k} \cdot \mathbf{x}}}{k^2} = \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{i\mathbf{k} \cdot \mathbf{x}}{k^2} = \frac{1}{\mathbf{k}^2} \mathbf{x}_x \frac{1}{\mathbf{k}^2} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{i\mathbf{k} \cdot \mathbf{x}}{k^2} = \frac{1}{\mathbf{k}^2} \mathbf{x}_x \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{i\mathbf{k} \cdot \mathbf{x}}{k^2}.
$$
\[G(x^2) = G(r) = \int_0^\infty \frac{dk}{(2\pi)^2} \frac{e^{-ikr}}{ikr} \]

\[= \frac{1}{r} \int_{-(2\pi)}^{(2\pi)} \frac{dk}{k} e^{\frac{ikr}{2}} \]

\[= \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{dz}{z} e^{\frac{iz}{2}} \]

\[= \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{dz}{z} e^{\frac{iz}{2}} - \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{dz}{z} e^{\frac{iz}{2}} \]

\[= \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{dz}{z} e^{\frac{iz}{2}} = \frac{\pi i}{2\pi i} = \frac{1}{2} \]

\[G(x^2) = \frac{1}{4\pi r} \]

\[G(x_1, x_2) = \frac{1}{4\pi |x_1 - x_2|} = G(x_2, x_1). \]

\[-\nabla_1^2 G(x_1, x_2) = \delta^3(x_1 - x_2) \]

\[= -\nabla_2^2 G(x_1, x_2), \]
So as we saw weeks ago

\[\phi(x, t) = \int G(x, x') 4 \pi \rho(x, t) \, d^3 x' \]

\[= \int \frac{\rho(x', t)}{1 - x' - x''} \, d^3 x' \]

in the Coulomb gauge — and also in electostatics in all gauges.

For the Helmholtz operator

\[(- \nabla^2 + k^2) G_H(x_1, x_2) = \delta^3(x_1 - x_2) \]

\[G_H(x_1, x_2) = \frac{\exp(ik|x_1 - x_2|)}{4\pi |x_1 - x_2|} \]

and for

\[(- \nabla^2 + k^2) G_{\text{MH}}(x_1, x_2) = \delta^3(x_1 - x_2) \]

we get

\[G_{\text{MH}}(x_1, x_2) = \frac{\exp(-k|x_1 - x_2|)}{4\pi |x_1 - x_2|} \]

both symmetric under \(x_1, x_2 \).
The spherical-harmonic expansion of the electrostatic Green's function is

\[
G(x_1, x_2) = \frac{1}{4\pi |x_1 - x_2|} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{\ell + 1} \frac{\ell}{\ell + 1} \frac{Y^m_l(\theta_1, \phi_1)}{Y^m_l(\theta_2, \phi_2)}
\]

where

\[
t = \begin{cases}
|x_1| & |x_1| < |x_2| \\
|x_2| & |x_2| < |x_1|
\end{cases}
\]

and

\[
t_2 = \begin{cases}
|x_2| & |x_2| < |x_1| \\
|x_1| & |x_1| < |x_2|
\end{cases}
\]

This form leads to the multipole expansion of the Coulomb-gauge (or static) electric potential

\[
\phi(x', t) = \int \frac{\rho(y, t) \, d^3 y}{|x' - y|} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{\ell + 1} \frac{\ell}{\ell + 1} \frac{Y^m_l(\theta, \phi)}{Y^m_l(\theta', \phi')} \int d^3 y \frac{Y^m_l(\theta', \phi')}{|x' - y|}
\]

in which the charge density \(\rho(y, t) \) is taken to vanish for \(|y| > R \) and in which \(|x' | > 0 \).
One has (12.4a)

\[
\frac{1}{|n_i - n_{i+1}|} = \sum_{l=0}^{s} \frac{v^l}{v > \epsilon} P_e \left(\frac{n_i \cdot n_{i+1}}{n_i \cdot n_{i+1}} \right).
\]

and also

\[
P_e \left(\hat{n}_i \cdot \hat{n}_{i+1} \right) = \frac{4\pi}{2\ell + 1} \sum_{m=-\ell}^{\ell} Y_{\ell} (\theta_i, \phi_i) Y_{\ell}^{\ast} (\theta_{i+1}, \phi_{i+1}).
\]