Chaos

Henri Poincaré (~1900) studied the three-body problem and found very complicated (chaotic) orbits.

There seem to be four kinds of classical motion:
1) periodic
2) steady (or damped motion that stops)
3) quasi-periodic (mixture of periodic motions, Wi)
4) chaotic

In a system after a transient period.

Examples

\[x'' + v x' + x^3 - x = g \sin t \quad \text{Exp. B theory} \]

\[x' \]

\[x \]

\[Fe \]

\[\text{magnets} \]
Data are t_1, t_2, t_3

At low flow rate, $\Delta t_m = t_{m+1} - t_m$ is constant, all Δt_m are equal.

At a slightly higher rate, the drops come with gaps that alternate $\Delta t_a, \Delta t_b, \Delta t_a, \Delta t_b, \ldots$ so that $\Delta t_{m+1} = \Delta t_m$. This is a period-two sequence.

At still higher flow rates, no regularity is apparent.
Chaotic Rayleigh-Bénard convection occurs when a fluid is placed in a gravitational field between two plates that are kept at constant temperatures with the lower plate hotter by ΔT above the chaotic threshold. For lower ΔT, the motion is steady convective cellular flow.

\[\text{Dynamical Systems} \]

\[\dot{x}_i = F_i(x) \quad \text{and} \quad \dot{x} = \dot{F}(x), \quad x \in \mathbb{R}^n \]

\[\dot{x}^*(t) = \dot{F}(x^*(t)) \]

The crossings of a suitably oriented plane give rise to a map

\[\tilde{x}_{n+1} = M(x_n) \]

in some fewer dimensions.
In the system
\[\dot{\mathbf{x}} = F(\mathbf{x}) \]
chaos can occur only if the dimension \(N \) of the vector \(\mathbf{x} \) exceeds \(N \geq 3 \).

For the invertible map
\[x_{n+1} = M(x_n) \quad \Rightarrow \quad x_n = M^{-1}(x_{n+1}) \]
chaos occurs only if \(N > 2 \).

If the map is not invertible, then chaos can occur even if \(N = 1 \). An example is
\[x_{n+1} = r \cdot x_n(1 - x_n) \]
which is not invertible and does exhibit chaos in increasingly striking forms as \(r \) exceeds a number slightly greater than \(r = 3.57 \). By \(r = 4 \), the map is totally chaotic.
Here $x_1 = x_2 = 0$ is an attractor.

Here the circle is an attractor called a limit cycle.

The limit cycle occurs in the van der Pol equation

$$\dot{y} + (\gamma^2 - \eta) y + \omega^2 y = 0$$

which may be written as the first-order system

$$\begin{align*}
\dot{x}_1 &= y \\
\dot{x}_2 &= y
\end{align*}$$

$$\begin{align*}
\dot{x}_1 &= -\omega^2 x_2 - (\gamma^2 - \eta) x_1 \\
\dot{x}_2 &= x_1
\end{align*}$$

The van der Pol equation was introduced in the 1920s to describe a vacuum-tube oscillator circuit.
Fractals

Fractal sets don't have dimensions that are natural numbers. To compute their dimensions one needs a definition of dimension.

The box-counting dimension is as follows: cover the set with line segments, squares, cubes, etc., of edge length \(\varepsilon \). Count how many you need as \(\varepsilon \to 0 \). Call the number of boxes \(N(\varepsilon) \). Then

\[
D_0 = \lim_{\varepsilon \to 0} \frac{\ln N(\varepsilon)}{\ln (1/\varepsilon)},
\]

Cantor set:

\[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & \frac{1}{3}
\end{array}\]

\[\begin{array}{ccc}
2 & 2 & \\
\end{array}\]

\[E_n = \left(\frac{1}{3}\right)^n \] need \(N(\varepsilon) = 2^n \) boxes.

So

\[D_0 = \lim_{n \to \infty} \frac{\ln 2^n}{\ln 3^n} = \lim_{n \to \infty} \frac{\ln 2}{\ln 3} \approx 0.63.\]

Attractors of fractal dimension are strange.